|
This article is cited in 1 scientific paper (total in 1 paper)
On conditions for the pluriharmonicity of the indicator of a holomorphic function of several variables
P. Z. Agranovich, L. I. Ronkin
Abstract:
In this paper we consider holomorphic functions $f(z,w)$ defined in a domain $E_r\times T_\alpha$, where $E_r=\{z:|z|<r\}$ and $T_\alpha=\{w:|\arg w|<\alpha\}$; we obtain necessary and sufficient conditions for the pluriharmonicity of the indicator
$$
h_f(z,w)=\varlimsup_{(z'w')\to(z,w)}\varlimsup_{t\to\infty}\frac{\ln|f(z',tw')|}{t^{\rho(t)}}
$$
of $f(z,w)$ in $E_r\times T_\alpha$.
We also obtain necessary and sufficient conditions for the pluriharmonicity of the indicator of a function $f(z)$ holomorphic in a cone.
Bibliography: 6 titles.
Received: 10.09.1974
Citation:
P. Z. Agranovich, L. I. Ronkin, “On conditions for the pluriharmonicity of the indicator of a holomorphic function of several variables”, Mat. Sb. (N.S.), 98(140):2(10) (1975), 319–332; Math. USSR-Sb., 27:2 (1975), 289–301
Linking options:
https://www.mathnet.ru/eng/sm3713https://doi.org/10.1070/SM1975v027n02ABEH002515 https://www.mathnet.ru/eng/sm/v140/i2/p319
|
Statistics & downloads: |
Abstract page: | 329 | Russian version PDF: | 86 | English version PDF: | 18 | References: | 79 |
|