Abstract:
In the study of the Cauchy–Dirichlet problem
L(u)≡∞∑|α|=0(−1)|α|DαAα(x,Dγu)=h(x),x∈G,Dωu∣∂G=0,|ω|=0,1,…,
infinite order Sobolev spaces
∘W∞{aα,pα}≡{u(x)∈C∞0(G):ρ(u)≡∞∑|α|=0aα‖Dαu‖pαpα<∞},
naturally arise, where aα⩾0 and pα⩾1 are numerical sequences. In this paper criteria for the nontriviality of ∘W∞{aα,pα} are established and the problem (1), (2) is investigated. Further, a theorem is obtained on the existence of the limit (as m→∞) of solutions of nonlinear 2mth order boundary value problems of elliptic and hyperbolic type, from which, in particular, follows the solvability of the mixed problem for the nonlinear hyperbolic equation u″+L(u)=h(t,x), t∈[0,T], where T>0 is arbitrary.
Bibliography: 9 titles.
Citation:
Yu. A. Dubinskii, “Sobolev spaces of infinite order and the behavior of solutions of some boundary value problems with unbounded increase of the order of the equation”, Math. USSR-Sb., 27:2 (1975), 143–162
\Bibitem{Dub75}
\by Yu.~A.~Dubinskii
\paper Sobolev spaces of infinite order and the behavior of solutions of some boundary value problems with unbounded increase of the order of the equation
\jour Math. USSR-Sb.
\yr 1975
\vol 27
\issue 2
\pages 143--162
\mathnet{http://mi.mathnet.ru/eng/sm3704}
\crossref{https://doi.org/10.1070/SM1975v027n02ABEH002506}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=412580}
\zmath{https://zbmath.org/?q=an:0324.46037}
Linking options:
https://www.mathnet.ru/eng/sm3704
https://doi.org/10.1070/SM1975v027n02ABEH002506
https://www.mathnet.ru/eng/sm/v140/i2/p163
This publication is cited in the following 37 articles:
G. M. Bahaa, “Optimality Conditions for Systems with Distributed Parameters Based on the Dubovitskii–Milyutin Theorem with Incomplete Information About the Initial Conditions”, J Math Sci, 276:2 (2023), 199
G. Bakhaa, “Usloviya optimalnosti sistem s raspredelennymi parametrami, ispolzuyuschie teoremu Dubovitskogo—Milyutina s nepolnoi informatsiei o nachalnykh usloviyakh”, Optimalnoe upravlenie, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 178, VINITI RAN, M., 2020, 3–19
G Mohamed Bahaa, “Fractional optimal control problem for infinite order system with control constraints”, Adv Differ Equ, 2016:1 (2016)
M.H. Abdou, A. Benkirane, M. Chrif , S. El Manouni, “Strongly anisotropic elliptic problems of infinite order with variable exponents”, Complex Variables and Elliptic Equations, 2014, 1
G.M. Bahaa, S.A.A. El-Marouf, “Pareto Optimal Control For Mixed Neumann Infinite-Order Parabolic System With State-Control Constraints”, Journal of Taibah University for Science, 2014
M.H.ousseine Abdou, Moussa Chrif, Said El Manouni, “Parabolic Equations of Infinite Order withL1Data”, Abstract and Applied Analysis, 2014 (2014), 1
Adam Kowalewski, 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR), 2014, 504
Kowalewski A., “Optimal Control via Initial Conditions of Infinite Order Hyperbolic Systems”, 2012 17th International Conference on Methods and Models in Automation and Robotics (Mmar), IEEE, 2012, 212–215
B.G.aber Mohamed, “Boundary Control Problem of Infinite Order Distributed Hyperbolic Systems Involving Time Lags”, ICA, 03:03 (2012), 211
Bahaa G. M., Weihai Zhang, “Optimality Conditions for Infinite Order Distributed Parabolic Systems with Multiple Time Delays Given in Integral Form”, Journal of Applied Mathematics, 2012:1 (2012)
Adam Kowalewski, 2011 16th International Conference on Methods & Models in Automation & Robotics, 2011, 84
M. Chrif, S. El Manouni, “Anisotropic equations in weighted Sobolev spaces of higher order”, Ricerche mat, 2009
Mostafa Bendahmane, Moussa Chrif, Said El Manouni, “Elliptic equations in weighted Sobolev spaces of infinite order with L <sup>1</sup> data”, Math Meth Appl Sci, 2009, n/a
W. Kotarski, G.M. Bahaa, “Optimality conditions for infinite order hyperbolic control problem with non-standard functional and time delay”, Journal of Information and Optimization Sciences, 28:3 (2007), 315
W. Kotarski, G.M. Bahaa, “Optimal Control Problem for Infinite Order Hyperbolic System with Mixed Control-State Constraints”, European Journal of Control, 11:2 (2005), 150
Ha Huy Bang, “Properties of functions in Orlicz spaces that depend on the geometry of their spectra”, Izv. Math., 61:2 (1997), 399–434
Ha Huy Bang, “Separability of Sobolev-Orlicz spaces of infinite order”, Math. Notes, 61:1 (1997), 118–120
V. D. Belousov, V. E. Plisko, E. B. Yanovskaya, D. D. Sokolov, S. Yu. Maslov, A. A. Bukhshtab, V. I. Nechaev, V. M. Paskonov, V. A. Artamonov, A. V. Prokhorov, N. V. Efimov, B. V. Khvedelidze, I. V. Dolgachev, V. A. Iskovskikh, A. B. Ivanov, V. T. Bazylev, A. V. Arkhangel'skiǐ, A. A. Sapozhenko, P. S. Saltan, P. S. Soltan, V. A. Chuyanov, M. Sh. Farber, S. V. Shvedenko, V. P. Petrenko, I. P. Mysovskikh, V. A. Trenogin, M. K. Samarin, Yu. A. Kuznetsov, E. D. Solomentsev, M. S. Nikulin, L. D. Kudryavtsev, V. N. Latyshev, D. V. Anosov, A. L. Shmel'kin, L. N. Shevrin, L. V. Kuz'min, V. L. Popov, D. V. Alekseevskiǐ, V. N. Remeslennikov, P. L. Dobrushin, V. V. Prelov, G. S. Khovanskiǐ, A. L. Onishchik, A. K. Tolpygo, L. A. Sidorov, L. A. Bokut', A. Ya. Kiruta, E. A. Palyutin, A. D. Taǐmanov, E. I. Vilkas, V. V. Rumyantsev, E. G. D'yakonov, A. F. Shapkin, L. E. Evtushik, V. I. Sobolev, V. M. Starszhinskiǐ, S. J. Pokhozhaev, V. G. Karmanov, Encyclopaedia of Mathematics, 1995, 67
Yu. A. Dubinskii, “Sobolev spaces of infinite order”, Russian Math. Surveys, 46:6 (1991), 107–147
P. P. Zabreiko, V. I. Nazarov, “Smoothness properties of solutions of nonlinear differential equations”, Math. USSR-Sb., 72:1 (1992), 135–150