Loading [MathJax]/jax/output/CommonHTML/jax.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1995, Volume 186, Issue 5, Pages 695–710
DOI: https://doi.org/10.1070/SM1995v186n05ABEH000037
(Mi sm37)
 

This article is cited in 18 scientific papers (total in 18 papers)

An algorithm for the recognition of 3-spheres (according to Thompson)

S. V. Matveev
References:
Abstract: The question of the existence of an algorithm for determining whether given 3-manifolds are homeomorphic is a key question of low-dimensional topology. An algorithm due to A. Thompson for the recognition of the standard 3-sphere is presented. The use of handle decomposition instead of triangulation greatly simplifies both the formulation and the proof of the algorithm.
Received: 23.11.1994
Bibliographic databases:
UDC: 513.83
MSC: Primary 57M25, 57M40, 57M50; Secondary 57R30
Language: English
Original paper language: Russian
Citation: S. V. Matveev, “An algorithm for the recognition of 3-spheres (according to Thompson)”, Sb. Math., 186:5 (1995), 695–710
Citation in format AMSBIB
\Bibitem{Mat95}
\by S.~V.~Matveev
\paper An algorithm for the~recognition of 3-spheres (according to~Thompson)
\jour Sb. Math.
\yr 1995
\vol 186
\issue 5
\pages 695--710
\mathnet{http://mi.mathnet.ru/eng/sm37}
\crossref{https://doi.org/10.1070/SM1995v186n05ABEH000037}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1341085}
\zmath{https://zbmath.org/?q=an:0849.57010}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TC19700004}
Linking options:
  • https://www.mathnet.ru/eng/sm37
  • https://doi.org/10.1070/SM1995v186n05ABEH000037
  • https://www.mathnet.ru/eng/sm/v186/i5/p69
  • This publication is cited in the following 18 articles:
    1. M. I. Kornev, “Gomologicheskie sfery”, Tr. MMO, 84, no. 2, MTsNMO, M., 2023, 243–296  mathnet
    2. S. V. Matveev, V. V. Tarkaev, “Recognition and tabulation of 3-manifolds up to complexity 13”, Chebyshevskii sb., 21:2 (2020), 290–300  mathnet  crossref
    3. Schleimer S., “Sphere Recognition Lies in Np”, Low-Dimensional and Symplectic Topology, Proceedings of Symposia in Pure Mathematics, 82, ed. Usher M., Amer Mathematical Soc, 2011, 183–213  crossref  mathscinet  zmath  isi
    4. Thom Sulanke, Frank H. Lutz, “Isomorphism-free lexicographic enumeration of triangulated surfaces and 3-manifolds”, European Journal of Combinatorics, 30:8 (2009), 1965  crossref  mathscinet  zmath
    5. Ivanov S.V., “The Computational Complexity of Basic Decision Problems in 3-Dimensional Topology”, Geod. Dedic., 131:1 (2008), 1–26  crossref  mathscinet  zmath  isi
    6. King S., “How to Make a Triangulation of S-3 Polytopal”, Trans. Am. Math. Soc., 356:11 (2004), 4519–4542  crossref  mathscinet  zmath  isi
    7. DAVID BACHMAN, SAUL SCHLEIMER, “THIN POSITION FOR TANGLES”, J. Knot Theory Ramifications, 12:01 (2003), 117  crossref  mathscinet  zmath
    8. Matveev S., Fominykh E., “Normal Surfaces in 3-Manifolds”, Dokl. Math., 65:3 (2002), 429–432  zmath  isi
    9. Simon A King, “The size of triangulations supporting a given link”, Geom Topol, 5 (2001), 369  crossref  mathscinet  zmath
    10. Ivanov S., “Recognizing the 3-Sphere”, Ill. J. Math., 45:4 (2001), 1073–1117  crossref  mathscinet  zmath  isi
    11. S. I. Adian, V. G. Durnev, “Decision problems for groups and semigroups”, Russian Math. Surveys, 55:2 (2000), 207–296  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    12. Matveev, SV, “Computer classification of 3-manifolds”, Russian Journal of Mathematical Physics, 7:3 (2000), 319  mathscinet  isi  elib
    13. Stocking M., “Almost Normal Surfaces in 3-Manifolds”, Trans. Am. Math. Soc., 352:1 (2000), 171–207  crossref  mathscinet  zmath  isi
    14. Ladegaillerie Y., “Complexes Galoisiens”, Trans. Am. Math. Soc., 352:4 (2000), 1723–1741  crossref  mathscinet  zmath  isi
    15. S. V. Matveev, “Algorithmic Classification of 3-Manifolds: Problems and Results”, Proc. Steklov Inst. Math., 225 (1999), 250–260  mathnet  mathscinet  zmath
    16. Hass J., “Algorithms for Recognizing Knots and 3-Manifolds”, Chaos Solitons Fractals, 9:4-5 (1998), 569–581  crossref  mathscinet  zmath  adsnasa  isi
    17. Thompson A., “Algorithmic Recognition of 3-Manifolds”, Bull. Amer. Math. Soc., 35:1 (1998), 57–66  crossref  mathscinet  zmath  isi
    18. S. V. Matveev, “Classification of sufficiently large three-dimensional manifolds”, Russian Math. Surveys, 52:5 (1997), 1029–1055  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:714
    Russian version PDF:274
    English version PDF:35
    References:83
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025