Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1995, Volume 186, Issue 5, Pages 675–693
DOI: https://doi.org/10.1070/SM1995v186n05ABEH000036
(Mi sm36)
 

This article is cited in 4 scientific papers (total in 4 papers)

Theorems of Hardy–Littlewood type for signed measures on a cone

Yu. N. Drozhzhinov, B. I. Zavialov

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: It is known that the positivity condition plays an important role in theorems of Hardy–Littlewood type. In the multi-dimensional case this condition can be relaxed significantly by replacing it with the condition of sign-definiteness on trajectories along which asymptotic properties are investigated. A number of theorems are proved in this paper that demonstrate this effect. Our main tool is a theorem on division of tempered distributions by a homogeneous polynomial, preserving the corresponding quasi-asymptotics. The results obtained are used to study the asymptotic behaviour at a boundary point of holomorphic functions in tubular domains over cones.
Received: 15.09.1994
Russian version:
Matematicheskii Sbornik, 1995, Volume 186, Number 5, Pages 49–68
Bibliographic databases:
Document Type: Article
UDC: 517.53
MSC: Primary 32A40, 40E05; Secondary 46F12
Language: English
Original paper language: Russian
Citation: Yu. N. Drozhzhinov, B. I. Zavialov, “Theorems of Hardy–Littlewood type for signed measures on a cone”, Mat. Sb., 186:5 (1995), 49–68; Sb. Math., 186:5 (1995), 675–693
Citation in format AMSBIB
\Bibitem{DroZav95}
\by Yu.~N.~Drozhzhinov, B.~I.~Zavialov
\paper Theorems of Hardy--Littlewood type for signed measures on a~cone
\jour Mat. Sb.
\yr 1995
\vol 186
\issue 5
\pages 49--68
\mathnet{http://mi.mathnet.ru/sm36}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1341084}
\zmath{https://zbmath.org/?q=an:0842.40002}
\transl
\jour Sb. Math.
\yr 1995
\vol 186
\issue 5
\pages 675--693
\crossref{https://doi.org/10.1070/SM1995v186n05ABEH000036}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TC19700003}
Linking options:
  • https://www.mathnet.ru/eng/sm36
  • https://doi.org/10.1070/SM1995v186n05ABEH000036
  • https://www.mathnet.ru/eng/sm/v186/i5/p49
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:367
    Russian version PDF:104
    English version PDF:6
    References:56
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024