Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1998, Volume 189, Issue 12, Pages 1855–1870
DOI: https://doi.org/10.1070/sm1998v189n12ABEH000369
(Mi sm369)
 

This article is cited in 5 scientific papers (total in 5 papers)

Integral manifolds of contact distributions

V. F. Kirichenko, I. P. Borisovskii

Moscow State Pedagogical University
References:
Abstract: The existence of an integral manifold of the contact distribution (a Legendre submanifold) that passes through an arbitrary point in a contact manifold $M^{2n+1}$, in an arbitrary totally real $n$-dimensional direction is established. A Legendre submanifold with these initial data is not unique in general, but in the case of a $K$-contact manifold of dimension greater than 5 the set of these submanifolds is shown to contain a totally geodesic submanifold (which is called a Blair submanifold in the paper) if and only if this $K$-contact manifold is a Sasakian space form. Each Blair submanifold of a Sasakian space form of $\Phi$-holomorphic sectional curvature $c$ is a space of constant curvature $(c+3)/4$. Applications of these results to the geometry of principal toroidal bundles are found.
Received: 16.02.1998
Bibliographic databases:
UDC: 513.74
MSC: Primary 53C15; Secondary 53C10
Language: English
Original paper language: Russian
Citation: V. F. Kirichenko, I. P. Borisovskii, “Integral manifolds of contact distributions”, Sb. Math., 189:12 (1998), 1855–1870
Citation in format AMSBIB
\Bibitem{KirBor98}
\by V.~F.~Kirichenko, I.~P.~Borisovskii
\paper Integral manifolds of contact distributions
\jour Sb. Math.
\yr 1998
\vol 189
\issue 12
\pages 1855--1870
\mathnet{http://mi.mathnet.ru//eng/sm369}
\crossref{https://doi.org/10.1070/sm1998v189n12ABEH000369}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1686016}
\zmath{https://zbmath.org/?q=an:0960.53046}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000080632300015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0032236084}
Linking options:
  • https://www.mathnet.ru/eng/sm369
  • https://doi.org/10.1070/sm1998v189n12ABEH000369
  • https://www.mathnet.ru/eng/sm/v189/i12/p119
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024