Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1974, Volume 23, Issue 3, Pages 362–381
DOI: https://doi.org/10.1070/SM1974v023n03ABEH001722
(Mi sm3688)
 

Saddle points of parabolic polynomials

S. G. Gindikin, M. V. Fedoryuk
References:
Abstract: Let $G(t,x)$ be the Green's function of a parabolic differential operator $\frac\partial{\partial t}+P\bigl(\frac1i\frac\partial{\partial x}\bigr)$. In a previous article of the authors (Mat. Sb. (N.S.) 91(133) (1973), 520–522) estimates for $G$ are obtained by means of a convex function $\nu_P$ invariantly defined by $P$, and the saddle points are distinguished under the assumption that $\nu_P$ is smooth. In the present paper the question of the existence of a finite number of saddle points is studied without assuming the smoothness of $\nu_P$; an example of a polynomial $P$ is constructed for which the function $\nu_P$ is not smooth. It is shown that for almost all polynomials $P$ the function $\nu_P$ is strictly convex almost everywhere.
Bibliography: 13 titles.
Received: 26.04.1973
Bibliographic databases:
UDC: 517.43
MSC: Primary 35B40, 35K30; Secondary 26A51
Language: English
Original paper language: Russian
Citation: S. G. Gindikin, M. V. Fedoryuk, “Saddle points of parabolic polynomials”, Math. USSR-Sb., 23:3 (1974), 362–381
Citation in format AMSBIB
\Bibitem{GinFed74}
\by S.~G.~Gindikin, M.~V.~Fedoryuk
\paper Saddle points of parabolic polynomials
\jour Math. USSR-Sb.
\yr 1974
\vol 23
\issue 3
\pages 362--381
\mathnet{http://mi.mathnet.ru//eng/sm3688}
\crossref{https://doi.org/10.1070/SM1974v023n03ABEH001722}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=393851}
\zmath{https://zbmath.org/?q=an:0306.35055}
Linking options:
  • https://www.mathnet.ru/eng/sm3688
  • https://doi.org/10.1070/SM1974v023n03ABEH001722
  • https://www.mathnet.ru/eng/sm/v136/i3/p385
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024