Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1974, Volume 23, Issue 2, Pages 215–231
DOI: https://doi.org/10.1070/SM1974v023n02ABEH002177
(Mi sm3679)
 

This article is cited in 2 scientific papers (total in 2 papers)

Endomorphism rings of free modules

G. M. Brodskii
References:
Abstract: Suppose $\mathfrak a$ is some property of modules. Let $\mathfrak{R_a}$ denote the class of rings over which all modules possess property $\mathfrak a$. The main theorem of this paper answers the following question for a rather extensive class of properties $\mathfrak a$; what must the property $\mathfrak b$ of modules be in order that $R\in\mathfrak{R_a}$ if and only if $\operatorname{End}_R(F)\in\mathfrak{R_b}$, for any free $R$-module $F$? Among the corollaries are many well-known theorems relating properties of the ring $R$ and the rings $\operatorname{End}_R(F)$, and also a number of new results of similar type.
Bibliography: 35 titles.
Received: 20.08.1973
Bibliographic databases:
UDC: 519.48
Language: English
Original paper language: Russian
Citation: G. M. Brodskii, “Endomorphism rings of free modules”, Math. USSR-Sb., 23:2 (1974), 215–231
Citation in format AMSBIB
\Bibitem{Bro74}
\by G.~M.~Brodskii
\paper Endomorphism rings of free modules
\jour Math. USSR-Sb.
\yr 1974
\vol 23
\issue 2
\pages 215--231
\mathnet{http://mi.mathnet.ru//eng/sm3679}
\crossref{https://doi.org/10.1070/SM1974v023n02ABEH002177}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=349761}
\zmath{https://zbmath.org/?q=an:0306.16011}
Linking options:
  • https://www.mathnet.ru/eng/sm3679
  • https://doi.org/10.1070/SM1974v023n02ABEH002177
  • https://www.mathnet.ru/eng/sm/v136/i2/p226
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024