Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1974, Volume 23, Issue 2, Pages 169–184
DOI: https://doi.org/10.1070/SM1974v023n02ABEH001718
(Mi sm3677)
 

An equation of convolution type on convex domains in $\mathbf R^2$

V. V. Napalkov
References:
Abstract: Let $D$ be a convex domain in $\mathbf R^2$, and let $C^{(k)}(D)$, $k=(k_1,\,k_2)$, be the space of functions $f(x)$, continuous in $D$ together with their partial derivatives
$$ \frac{\partial^{n_1+n_2}}{\partial x_1^{n_1}\partial x_2^{n_2}}f, $$
$n_1\leqslant k_1$, $n_2\leqslant k_2$. This space is provided with the natural topology of uniform convergence of functions and corresponding derivatives on compact subsets of $D$. Consider in $C^{(k)}(D)$ the homogeneous convolution equation $\mu*f=0$, where $\mu$ is a continuous linear functional on $C^{(k)}(D)$. It is proved that every solution of this equation from the space $C^{(k)}(D)$ can be approximated in the topology of $C^{(k)}(D)$ by a linear combination of exponential polynomials satisfying this equation.
Bibliography: 15 titles.
Received: 22.05.1973
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1974, Volume 94(136), Number 2(6), Pages 178–193
Bibliographic databases:
UDC: 517.948
MSC: Primary 47A50, 41A65; Secondary 46F10
Language: English
Original paper language: Russian
Citation: V. V. Napalkov, “An equation of convolution type on convex domains in $\mathbf R^2$”, Mat. Sb. (N.S.), 94(136):2(6) (1974), 178–193; Math. USSR-Sb., 23:2 (1974), 169–184
Citation in format AMSBIB
\Bibitem{Nap74}
\by V.~V.~Napalkov
\paper An equation of convolution type on convex domains in~$\mathbf R^2$
\jour Mat. Sb. (N.S.)
\yr 1974
\vol 94(136)
\issue 2(6)
\pages 178--193
\mathnet{http://mi.mathnet.ru/sm3677}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=344885}
\zmath{https://zbmath.org/?q=an:0306.46052}
\transl
\jour Math. USSR-Sb.
\yr 1974
\vol 23
\issue 2
\pages 169--184
\crossref{https://doi.org/10.1070/SM1974v023n02ABEH001718}
Linking options:
  • https://www.mathnet.ru/eng/sm3677
  • https://doi.org/10.1070/SM1974v023n02ABEH001718
  • https://www.mathnet.ru/eng/sm/v136/i2/p178
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:363
    Russian version PDF:98
    English version PDF:12
    References:63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024