Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1975, Volume 26, Issue 3, Pages 331–347
DOI: https://doi.org/10.1070/SM1975v026n03ABEH002484
(Mi sm3656)
 

Properties of Riemann sums for functions representable by a trigonometric series with monotone coefficients

A. Yu. Petrovich
References:
Abstract: We study properties of Riemann sums
$$ R_n(\varphi,a)=\frac{2\pi}n\sum_{k=0}^{n-1}\varphi\biggl(2\pi\frac{k+a}n\biggr),\qquad0\leqslant a\leqslant1, $$
for functions representable as the sum of a trigonometric series with monotone (or convex) coefficients. We consider two basic problems: 1) the connection between the behavior of these sums and the rate of decrease of the coefficients of the series; 2) the limit properties of the ratio of a coefficient of the series, considered as an integral, to a corresponding Riemann sum of higher order.
Bibliography: 4 titles.
Received: 18.11.1974
Bibliographic databases:
UDC: 517.522.3
MSC: Primary 42A32, 42A20; Secondary 26A42, 41A25
Language: English
Original paper language: Russian
Citation: A. Yu. Petrovich, “Properties of Riemann sums for functions representable by a trigonometric series with monotone coefficients”, Math. USSR-Sb., 26:3 (1975), 331–347
Citation in format AMSBIB
\Bibitem{Pet75}
\by A.~Yu.~Petrovich
\paper Properties of Riemann sums for functions representable by a~trigonometric series with monotone coefficients
\jour Math. USSR-Sb.
\yr 1975
\vol 26
\issue 3
\pages 331--347
\mathnet{http://mi.mathnet.ru//eng/sm3656}
\crossref{https://doi.org/10.1070/SM1975v026n03ABEH002484}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=380243}
\zmath{https://zbmath.org/?q=an:0315.42006}
Linking options:
  • https://www.mathnet.ru/eng/sm3656
  • https://doi.org/10.1070/SM1975v026n03ABEH002484
  • https://www.mathnet.ru/eng/sm/v139/i3/p360
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024