Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1975, Volume 26, Issue 3, Pages 295–311
DOI: https://doi.org/10.1070/SM1975v026n03ABEH002482
(Mi sm3654)
 

Finite groups whose Sylow 2-subgroups have cyclic commutator subgroups

R. Zh. Aleev
References:
Abstract: The following theorem is proved.
Theorem. {\it Suppose $G$ is a finite group such that $O^2(G)=G$ and $O_{2',2}(G)=O(G)$. Assume that a Sylow $2$-subgroup $T$ of $G$ is the direct product of subgroups $W$ and $A$, where $A$ is elementary Abelian and $W$ is non-Abelian dihedral, semidihedral, or wreathed. Then $T$ contains subgroups $W^*$ and $A^*$ with the following properties: $1)\ T=W^*\times A^*;$ $2)\ W\cong W^*,$ and all involutions of $W^*$ are conjugate in $G;$ $3)\ A\cong A^*,$ and $A^*$ is strongly closed in $T$ $($with respect to $G)$.}
As a consequence, a description is given of the finite groups whose Sylow 2-subgroups have cyclic commutator subgroups, the simple ones among which are the following: 1) $PSL_2(q)$, where $q\geqslant4$; 2) $PSL_3(q)$ and $PSU_3(q)$, where $q$ is odd; 3) $A_7$, $M_{11}$, the Janko group $J_1$, and the Ree groups.
Bibliography: 12 titles.
Received: 05.05.1974
Bibliographic databases:
UDC: 519.44
MSC: 20D05, 20D20
Language: English
Original paper language: Russian
Citation: R. Zh. Aleev, “Finite groups whose Sylow 2-subgroups have cyclic commutator subgroups”, Math. USSR-Sb., 26:3 (1975), 295–311
Citation in format AMSBIB
\Bibitem{Ale75}
\by R.~Zh.~Aleev
\paper Finite groups whose Sylow 2-subgroups have cyclic commutator subgroups
\jour Math. USSR-Sb.
\yr 1975
\vol 26
\issue 3
\pages 295--311
\mathnet{http://mi.mathnet.ru//eng/sm3654}
\crossref{https://doi.org/10.1070/SM1975v026n03ABEH002482}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=414699}
\zmath{https://zbmath.org/?q=an:0316.20019}
Linking options:
  • https://www.mathnet.ru/eng/sm3654
  • https://doi.org/10.1070/SM1975v026n03ABEH002482
  • https://www.mathnet.ru/eng/sm/v139/i3/p323
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024