|
This article is cited in 22 scientific papers (total in 22 papers)
Some properties of a generalized solution of the second boundary-value problem for a parabolic equation
A. K. Gushchin
Abstract:
We establish some properties (bounds in $L_p(\Omega)$ for $p\geqslant1$, absolute continuity of the entropy, etc.) for a solution in a cylindrical domain $\Omega\times\{t>0\}$, where $\Omega$ is an arbitrary, unbounded in general, domain of $R_n$, of the second boundary-value problem for a linear uniformly-parabolic equation of second order:
\begin{gather*}
\frac{\partial u}{\partial t}=\sum_{i,j=1}^n\frac\partial{\partial x_i}\biggl(a_{ij}(t,x)\frac{\partial u(t,x)}{\partial x_j}\biggr),
\\
\frac{\partial u}{\partial N}\bigg|_{x\in\partial\Omega}=0,\qquad u\big|_{t=0}=\varphi(x),\quad\varphi(x)\in L_2(\Omega).
\end{gather*}
Bibliography: 2 titles.
Received: 19.12.1974
Citation:
A. K. Gushchin, “Some properties of a generalized solution of the second boundary-value problem for a parabolic equation”, Mat. Sb. (N.S.), 97(139):2(6) (1975), 242–261; Math. USSR-Sb., 26:2 (1975), 225–244
Linking options:
https://www.mathnet.ru/eng/sm3650https://doi.org/10.1070/SM1975v026n02ABEH002478 https://www.mathnet.ru/eng/sm/v139/i2/p242
|
Statistics & downloads: |
Abstract page: | 465 | Russian version PDF: | 142 | English version PDF: | 12 | References: | 78 | First page: | 2 |
|