|
This article is cited in 45 scientific papers (total in 45 papers)
Best methods of approximation and interpolation of differentiable functions in the space $C_{[-1,1]}$
V. M. Tikhomirov
Abstract:
In this paper are computed the $n$-diameter of the class
$$
W_r=\{f(x):|f^{(r-1)}(x)-f^{(r-1)}(x')|\leqslant|x-x'|,|x|,|x'|\leqslant1\}
$$
of functions defined on $[-1,1]$ in $C_{[-1,1]}$.
This problem reduces to the variational problem
\begin{gather*}
\lambda_{nr}=\inf||x||,\\
x^{(r+1)}=2\sum_{k=1}^m(-1)^{k+1}\delta(t-t_k),\qquad-1\leqslant t_1\leqslant\dots\leqslant t_m\leqslant1,\quad m\leqslant n,\\
x^r(t)\equiv-1,\qquad t\leqslant-1,
\end{gather*}
whose solution is described in Theorem 1 of the paper.
Bibliography: 6 titles.
Received: 24.01.1969
Citation:
V. M. Tikhomirov, “Best methods of approximation and interpolation of differentiable functions in the space $C_{[-1,1]}$”, Math. USSR-Sb., 9:2 (1969), 275–289
Linking options:
https://www.mathnet.ru/eng/sm3619https://doi.org/10.1070/SM1969v009n02ABEH002052 https://www.mathnet.ru/eng/sm/v122/i2/p290
|
Statistics & downloads: |
Abstract page: | 937 | Russian version PDF: | 268 | English version PDF: | 12 | References: | 64 | First page: | 2 |
|