Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1998, Volume 189, Issue 12, Pages 1795–1808
DOI: https://doi.org/10.1070/sm1998v189n12ABEH000360
(Mi sm360)
 

This article is cited in 9 scientific papers (total in 9 papers)

Renewal theorems for a system of integral equations

N. B. Engibaryan

Byurakan Astrophysical Observatory, National Academy of Sciences of Armenia
References:
Abstract: The system of renewal integral equations
$$ \varphi _i(x)=g_i(x)+\sum _{j=1}^m\int _0^xu_{ij}(x-t)\varphi _j(t)\,dt, \qquad i=1,\dots ,m, $$
is considered, where the matrix-valued function $u=(u_{ij})$ satisfies the condition of conservativeness $0\leqslant u_{ij}\in L_1^+\equiv L_1(0;\infty)$, and the matrix $A=\int _0^\infty u(x)\,dx$ is irreducible and of spectral radius.
The existence of a limit at $+\infty$ of the solution $\varphi =(\varphi _1,\dots ,\varphi _m)^T$ is established in the case when the vector-valued function $g=(g_1,\dots ,g_m)^T\in L_1^m$ is bounded and $g(+\infty )=0$. This limit is evaluated. The structure of $\phi$ for $g\in L_1^m$ is determined; namely, $\varphi (x)=\mu +\rho _0(x)+\psi(x)$, where $\rho _0\in C_0^m$ and $\psi \in L_1^m$. A similar formula for the resolvent matrix-valued function is obtained.
Received: 02.04.1997 and 23.10.1997
Bibliographic databases:
UDC: 517.9+519.24
MSC: 45E10, 45F15
Language: English
Original paper language: Russian
Citation: N. B. Engibaryan, “Renewal theorems for a system of integral equations”, Sb. Math., 189:12 (1998), 1795–1808
Citation in format AMSBIB
\Bibitem{Eng98}
\by N.~B.~Engibaryan
\paper Renewal theorems for a~system of integral equations
\jour Sb. Math.
\yr 1998
\vol 189
\issue 12
\pages 1795--1808
\mathnet{http://mi.mathnet.ru//eng/sm360}
\crossref{https://doi.org/10.1070/sm1998v189n12ABEH000360}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1686012}
\zmath{https://zbmath.org/?q=an:0932.45005}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000080632300011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0032235911}
Linking options:
  • https://www.mathnet.ru/eng/sm360
  • https://doi.org/10.1070/sm1998v189n12ABEH000360
  • https://www.mathnet.ru/eng/sm/v189/i12/p59
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024