Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1970, Volume 12, Issue 4, Pages 553–571
DOI: https://doi.org/10.1070/SM1970v012n04ABEH000938
(Mi sm3529)
 

This article is cited in 7 scientific papers (total in 7 papers)

On the Neumann boundary problem in a domain with complicated boundary

E. Ya. Khruslov
References:
Abstract: The second boundary value problem is studied for a Helmholtz equation in a domain $G^{(n)}$, which is the complement of a strongly disconnected set $F^{(n)}$, contained in a neighborhood of a fixed surface $\Gamma$.
An approximate description of a solution $u^{(n)}(x)$ of this problem is based on the study of the sequence $\{u^{(n)}(x),n=1,2,\dots\}$ of solutions corresponding to a sequence $\{F^{(n)}\}$ such that for $n\to\infty$ the set $F^{(n)}$ becomes infinitely close to $\Gamma$ and becomes increasingly disconnected.
The sets $F^{(n)}$ are characterized by the notion of conductivity, introduced in this paper. Necessary and sufficient conditions are given (in terms of conductivity) for the existence of a function $v(x)$ as a limit of the sequence $\{u^{(n)}(x)\}$ for $n\to\infty$ such that it satisfies the same conditions outside $\Gamma$, and on $\Gamma$ the conjugacy conditions of the form
$$ \biggl(\frac{\partial v}{\partial\nu}\biggr)_+=\biggl(\frac{\partial v}{\partial\nu}\biggr)_-=p(x)[v_+-v_-], $$
where the limits of functions from different sides of $\Gamma$ are indicated by the signs $+$ and $-$; $\nu$ is the normal to $\Gamma$.
Figure: 1.
Bibliography: 7 titles.
Received: 27.03.1970
Bibliographic databases:
UDC: 517.944
MSC: 35N15, 35J05, 35J25
Language: English
Original paper language: Russian
Citation: E. Ya. Khruslov, “On the Neumann boundary problem in a domain with complicated boundary”, Math. USSR-Sb., 12:4 (1970), 553–571
Citation in format AMSBIB
\Bibitem{Khr70}
\by E.~Ya.~Khruslov
\paper On~the Neumann boundary problem in a~domain with complicated boundary
\jour Math. USSR-Sb.
\yr 1970
\vol 12
\issue 4
\pages 553--571
\mathnet{http://mi.mathnet.ru//eng/sm3529}
\crossref{https://doi.org/10.1070/SM1970v012n04ABEH000938}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=273194}
\zmath{https://zbmath.org/?q=an:0219.31010|0204.42304}
Linking options:
  • https://www.mathnet.ru/eng/sm3529
  • https://doi.org/10.1070/SM1970v012n04ABEH000938
  • https://www.mathnet.ru/eng/sm/v125/i4/p556
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025