Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1998, Volume 189, Issue 10, Pages 1517–1531
DOI: https://doi.org/10.1070/sm1998v189n10ABEH000352
(Mi sm352)
 

This article is cited in 3 scientific papers (total in 3 papers)

Generalized graph manifolds and their effective recognition

S. V. Matveev

Chelyabinsk State University
References:
Abstract: A generalized graph manifold is a three-dimensional manifold obtained by gluing together elementary blocks, each of which is either a Seifert manifold or contains no essential tori or annuli. By a well-known result on torus decomposition each compact three-dimensional manifold with boundary that is either empty or consists of tori has a canonical representation as a generalized graph manifold. A short simple proof of the existence of a canonical representation is presented and a (partial) algorithm for its construction is described. A simple hyperbolicity test for blocks that are not Seifert manifolds is also presented.
Received: 25.05.1998
Russian version:
Matematicheskii Sbornik, 1998, Volume 189, Number 10, Pages 89–104
DOI: https://doi.org/10.4213/sm352
Bibliographic databases:
UDC: 513.83
MSC: Primary 57N10; Secondary 57-04
Language: English
Original paper language: Russian
Citation: S. V. Matveev, “Generalized graph manifolds and their effective recognition”, Mat. Sb., 189:10 (1998), 89–104; Sb. Math., 189:10 (1998), 1517–1531
Citation in format AMSBIB
\Bibitem{Mat98}
\by S.~V.~Matveev
\paper Generalized graph manifolds and their effective recognition
\jour Mat. Sb.
\yr 1998
\vol 189
\issue 10
\pages 89--104
\mathnet{http://mi.mathnet.ru/sm352}
\crossref{https://doi.org/10.4213/sm352}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1691296}
\zmath{https://zbmath.org/?q=an:0967.57019}
\elib{https://elibrary.ru/item.asp?id=13896001}
\transl
\jour Sb. Math.
\yr 1998
\vol 189
\issue 10
\pages 1517--1531
\crossref{https://doi.org/10.1070/sm1998v189n10ABEH000352}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000078221100011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0012350557}
Linking options:
  • https://www.mathnet.ru/eng/sm352
  • https://doi.org/10.1070/sm1998v189n10ABEH000352
  • https://www.mathnet.ru/eng/sm/v189/i10/p89
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:405
    Russian version PDF:239
    English version PDF:13
    References:56
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024