Loading [MathJax]/jax/output/CommonHTML/jax.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1970, Volume 12, Issue 2, Pages 271–312
DOI: https://doi.org/10.1070/SM1970v012n02ABEH000922
(Mi sm3513)
 

This article is cited in 23 scientific papers (total in 23 papers)

Instability in a Hamiltonian system and the distribution of asteroids

A. D. Bruno
References:
Abstract: The formal stability of periodic solutions is investigated for a Hamiltonian system in two degrees of freedom. The nature of the zones of instability is exhibited in the case of a resonance of order q3. In contrast to classical theory, an isoenergetic reduction is not carried out. This permits unstable solutions close to periodic solutions to be studied in full. The results are applied to the restricted problem of three bodies, which allows us to explain qualitatively the nature of all gaps with q3 in the distribution of asteroids.
Figures: 19.
Bibliography: 37 titles.
Received: 05.02.1970
Bibliographic databases:
UDC: 517.913+521.41
Language: English
Original paper language: Russian
Citation: A. D. Bruno, “Instability in a Hamiltonian system and the distribution of asteroids”, Math. USSR-Sb., 12:2 (1970), 271–312
Citation in format AMSBIB
\Bibitem{Bru70}
\by A.~D.~Bruno
\paper Instability in a~Hamiltonian system and the distribution of asteroids
\jour Math. USSR-Sb.
\yr 1970
\vol 12
\issue 2
\pages 271--312
\mathnet{http://mi.mathnet.ru/eng/sm3513}
\crossref{https://doi.org/10.1070/SM1970v012n02ABEH000922}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=274867}
\zmath{https://zbmath.org/?q=an:0217.12401}
Linking options:
  • https://www.mathnet.ru/eng/sm3513
  • https://doi.org/10.1070/SM1970v012n02ABEH000922
  • https://www.mathnet.ru/eng/sm/v125/i2/p273
  • This publication is cited in the following 23 articles:
    1. Daniel Wilczak, Roberto Barrio, “Systematic Computer-Assisted Proof of Branches of Stable Elliptic Periodic Orbits and Surrounding Invariant Tori”, SIAM J. Appl. Dyn. Syst., 16:3 (2017), 1618  crossref
    2. Franziska Onken, Steffen Lange, Roland Ketzmerick, Arnd Bäcker, “Bifurcations of families of 1D-tori in 4D symplectic maps”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 26:6 (2016)  crossref
    3. Bryuno A.D., Varin V.P., “O raspredelenii asteroidov po srednim dvizheniyam”, Astronomicheskii vestnik, 45:4 (2011), 334–340  elib
    4. A. G. Magner, K.-i. Arita, S. N. Fedotkin, “Semiclassical Approach for Bifurcations in a Smooth Finite-Depth Potential”, Progress of Theoretical Physics, 115:3 (2006), 523  crossref  zmath
    5. J. P. Keating, S. D. Prado, M. Sieber, “Universal quantum signature of mixed dynamics in antidot lattices”, Phys Rev B, 72:24 (2005), 245334  crossref  adsnasa  isi
    6. J. Kaidel, M. Brack, “Semiclassical trace formulas for pitchfork bifurcation sequences”, Phys Rev E, 70:1 (2004), 016206  crossref  isi
    7. P. Lebœuf, A. Mouchet, “Normal Forms and Complex Periodic Orbits in Semiclassical Expansions of Hamiltonian Systems”, Annals of Physics, 275:1 (1999), 54  crossref  mathscinet  zmath
    8. E. Todesco, M. Gemmi, Hamiltonian Systems with Three or More Degrees of Freedom, 1999, 600  crossref
    9. Henning Schomerus, “Periodic orbits near bifurcations of codimension two: classical mechanics, semiclassics and Stokes transitions”, J Phys A Math Gen, 31:18 (1998), 4167  crossref  mathscinet  zmath
    10. A M Ozorio de Almeida, Wei-Mou Zheng, J Phys A Math Gen, 31:23 (1998), L441  crossref  mathscinet  zmath  adsnasa
    11. Martin Sieber, Henning Schomerus, “Uniform approximation for period-quadrupling bifurcations”, J Phys A Math Gen, 31:1 (1998), 165  crossref  zmath  adsnasa
    12. Henning Schomerus, Martin Sieber, J Phys A Math Gen, 30:13 (1997), 4537  crossref  mathscinet  zmath
    13. Martin Sieber, J Phys A Math Gen, 30:13 (1997), 4563  crossref  mathscinet  zmath
    14. E Todesco, “Local analysis of formal stability and existence of fixed points in 4d symplectic mappings”, Physica D: Nonlinear Phenomena, 95:1 (1996), 1  crossref  mathscinet  zmath
    15. M. Giovannozzi, R. Grassi, W. Scandale, E. Todesco, “Sorting approach to magnetic random errors”, Phys Rev E, 52:3 (1995), 3093  crossref  adsnasa  isi
    16. Alessandro Morbidelli, Antonio Giorgilli, “On the dynamics in the asteroids belt. Part I : General theory”, Celestial Mech Dyn Astr, 47:2 (1990), 145  crossref
    17. Alessandro Morbidelli, Antonio Giorgilli, “On the dynamics in the asteroids belt. Part II: Detailed study of the main resonances”, Celestial Mech Dyn Astr, 47:2 (1990), 173  crossref
    18. A. D. Bruno, “Normalization of a Hamiltonian system near an invariant cycle or torus”, Russian Math. Surveys, 44:2 (1989), 53–89  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    19. A. D. Bruno, “The normal form of a Hamiltonian system”, Russian Math. Surveys, 43:1 (1988), 25–66  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    20. M M Dodson, J A G Vickers, J Phys A Math Gen, 19:3 (1986), 349  crossref  mathscinet  zmath  adsnasa
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:482
    Russian version PDF:168
    English version PDF:21
    References:56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025