Abstract:
The formal stability of periodic solutions is investigated for a Hamiltonian system in two degrees of freedom. The nature of the zones of instability is exhibited in the case of a resonance of order q⩾3. In contrast to classical theory, an isoenergetic reduction is not carried out. This permits unstable solutions close to periodic solutions to be studied in full. The results are applied to the restricted problem of three bodies, which allows us to explain qualitatively the nature of all gaps with q⩾3 in the distribution of asteroids.
Figures: 19.
Bibliography: 37 titles.
\Bibitem{Bru70}
\by A.~D.~Bruno
\paper Instability in a~Hamiltonian system and the distribution of asteroids
\jour Math. USSR-Sb.
\yr 1970
\vol 12
\issue 2
\pages 271--312
\mathnet{http://mi.mathnet.ru/eng/sm3513}
\crossref{https://doi.org/10.1070/SM1970v012n02ABEH000922}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=274867}
\zmath{https://zbmath.org/?q=an:0217.12401}
Linking options:
https://www.mathnet.ru/eng/sm3513
https://doi.org/10.1070/SM1970v012n02ABEH000922
https://www.mathnet.ru/eng/sm/v125/i2/p273
This publication is cited in the following 23 articles:
Daniel Wilczak, Roberto Barrio, “Systematic Computer-Assisted Proof of Branches of Stable Elliptic Periodic Orbits and Surrounding Invariant Tori”, SIAM J. Appl. Dyn. Syst., 16:3 (2017), 1618
Franziska Onken, Steffen Lange, Roland Ketzmerick, Arnd Bäcker, “Bifurcations of families of 1D-tori in 4D symplectic maps”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 26:6 (2016)
Bryuno A.D., Varin V.P., “O raspredelenii asteroidov po srednim dvizheniyam”, Astronomicheskii vestnik, 45:4 (2011), 334–340
A. G. Magner, K.-i. Arita, S. N. Fedotkin, “Semiclassical Approach for Bifurcations in a Smooth Finite-Depth Potential”, Progress of Theoretical Physics, 115:3 (2006), 523
J. P. Keating, S. D. Prado, M. Sieber, “Universal quantum signature of mixed dynamics in antidot lattices”, Phys Rev B, 72:24 (2005), 245334
J. Kaidel, M. Brack, “Semiclassical trace formulas for pitchfork bifurcation sequences”, Phys Rev E, 70:1 (2004), 016206
P. Lebœuf, A. Mouchet, “Normal Forms and Complex Periodic Orbits in Semiclassical Expansions of Hamiltonian Systems”, Annals of Physics, 275:1 (1999), 54
E. Todesco, M. Gemmi, Hamiltonian Systems with Three or More Degrees of Freedom, 1999, 600
Henning Schomerus, “Periodic orbits near bifurcations of codimension two: classical mechanics, semiclassics and Stokes transitions”, J Phys A Math Gen, 31:18 (1998), 4167
A M Ozorio de Almeida, Wei-Mou Zheng, J Phys A Math Gen, 31:23 (1998), L441
Martin Sieber, Henning Schomerus, “Uniform approximation for period-quadrupling bifurcations”, J Phys A Math Gen, 31:1 (1998), 165
Henning Schomerus, Martin Sieber, J Phys A Math Gen, 30:13 (1997), 4537
Martin Sieber, J Phys A Math Gen, 30:13 (1997), 4563
E Todesco, “Local analysis of formal stability and existence of fixed points in 4d symplectic mappings”, Physica D: Nonlinear Phenomena, 95:1 (1996), 1
M. Giovannozzi, R. Grassi, W. Scandale, E. Todesco, “Sorting approach to magnetic random errors”, Phys Rev E, 52:3 (1995), 3093
Alessandro Morbidelli, Antonio Giorgilli, “On the dynamics in the asteroids belt. Part I : General theory”, Celestial Mech Dyn Astr, 47:2 (1990), 145
Alessandro Morbidelli, Antonio Giorgilli, “On the dynamics in the asteroids belt. Part II: Detailed study of the main resonances”, Celestial Mech Dyn Astr, 47:2 (1990), 173
A. D. Bruno, “Normalization of a Hamiltonian system near an invariant cycle or torus”, Russian Math. Surveys, 44:2 (1989), 53–89
A. D. Bruno, “The normal form of a Hamiltonian system”, Russian Math. Surveys, 43:1 (1988), 25–66
M M Dodson, J A G Vickers, J Phys A Math Gen, 19:3 (1986), 349