Loading [MathJax]/jax/output/CommonHTML/jax.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1974, Volume 22, Issue 4, Pages 517–534
DOI: https://doi.org/10.1070/SM1974v022n04ABEH002170
(Mi sm3472)
 

This article is cited in 4 scientific papers (total in 5 papers)

On the representation of an analytic function as a sum of periodic functions

A. F. Leont'ev
References:
Abstract: Let D be any convex polygon with vertices γ1,γ2,,γp; let Dk be the half-plane containing D bounded by the line through γk and γk+1. We show that any function F(z) analytic in D can be represented in the form
F(z)=pk=1Fk(z),zD,
where Fk(z) is regular and periodic in Dk, with period γk+1γk. If F(z) is regular in D and if F(z) and its first s derivatives are continuous in ¯D, then
F(z)=pk=1Fk(z)+p(z),z¯D.
Here for even p we have that Fk(z) is regular in Dk and is continuous, together with its first s2 derivatives, on ¯Dk (we assume s2), Fk(z) is periodic with period γk+1γk, and p(z) is a polynomial of degree at most s+p/22. For odd p, Fk(z) is continuous, together with its first s4 derivatives, in ¯Dk (we assume s4), and p(z) is a polynomial of degree at most s+(p1)/22.
Bibliography: 3 titles.
Received: 05.11.1973
Bibliographic databases:
UDC: 517.53
MSC: Primary 30A16; Secondary 30A64
Language: English
Original paper language: Russian
Citation: A. F. Leont'ev, “On the representation of an analytic function as a sum of periodic functions”, Math. USSR-Sb., 22:4 (1974), 517–534
Citation in format AMSBIB
\Bibitem{Leo74}
\by A.~F.~Leont'ev
\paper On the representation of an analytic function as a~sum of periodic functions
\jour Math. USSR-Sb.
\yr 1974
\vol 22
\issue 4
\pages 517--534
\mathnet{http://mi.mathnet.ru/eng/sm3472}
\crossref{https://doi.org/10.1070/SM1974v022n04ABEH002170}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=350013}
\zmath{https://zbmath.org/?q=an:0289.30006}
Linking options:
  • https://www.mathnet.ru/eng/sm3472
  • https://doi.org/10.1070/SM1974v022n04ABEH002170
  • https://www.mathnet.ru/eng/sm/v135/i4/p512
  • This publication is cited in the following 5 articles:
    1. Takanao Negishi, “On periodic decomposition of entire functions of several variables”, Aequat. Math, 2014  crossref  mathscinet  zmath
    2. A. M. Sedletskii, “Projection from the spaces Ep on a convex polygon onto subspaces of periodic functions”, Math. USSR-Izv., 33:2 (1989), 373–390  mathnet  crossref  mathscinet  zmath
    3. A. M. Sedletskii, “Decomposition of an analytic function into a sum of periodic functions”, Math. USSR-Izv., 25:1 (1985), 163–181  mathnet  crossref  mathscinet  zmath
    4. A. M. Sedletskii, “Bases of exponential functions in the spaces Ep on convex polygons”, Math. USSR-Izv., 13:2 (1979), 387–404  mathnet  crossref  mathscinet  zmath  isi
    5. V. S. Vladimirov, S. M. Nikol'skii, Yu. N. Frolov, “Aleksei Fedorovich Leont'ev (on his sixtieth birthday)”, Russian Math. Surveys, 32:3 (1977), 131–144  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:334
    Russian version PDF:108
    English version PDF:26
    References:56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025