Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1974, Volume 22, Issue 4, Pages 517–534
DOI: https://doi.org/10.1070/SM1974v022n04ABEH002170
(Mi sm3472)
 

This article is cited in 4 scientific papers (total in 5 papers)

On the representation of an analytic function as a sum of periodic functions

A. F. Leont'ev
References:
Abstract: Let $D$ be any convex polygon with vertices $\gamma_1,\gamma_2,\dots,\gamma_p$; let $D_k$ be the half-plane containing $D$ bounded by the line through $\gamma_k$ and $ \gamma_{k+1}$. We show that any function $F(z)$ analytic in $D$ can be represented in the form
$$ F(z)=\sum_{k=1}^pF_k(z),\qquad z\in D, $$
where $F_k(z)$ is regular and periodic in $D_k$, with period $\gamma_{k+1}-\gamma_k$. If $F(z)$ is regular in $D$ and if $F(z)$ and its first $s$ derivatives are continuous in $\overline D$, then
$$ F(z)=\sum_{k=1}^pF_k(z)+p(z),\qquad z\in\overline D. $$
Here for even $p$ we have that $F_k(z)$ is regular in $D_k$ and is continuous, together with its first $s-2$ derivatives, on $\overline D_k$ (we assume $ s\geqslant2$), $F_k(z)$ is periodic with period $\gamma_{k+1}-\gamma_k$, and $p(z)$ is a polynomial of degree at most $s+p/2-2$. For odd $p$, $F_k(z)$ is continuous, together with its first $s-4$ derivatives, in $\overline D_k$ (we assume $s\geqslant4$), and $p(z)$ is a polynomial of degree at most $s+(p-1)/2-2$.
Bibliography: 3 titles.
Received: 05.11.1973
Bibliographic databases:
UDC: 517.53
MSC: Primary 30A16; Secondary 30A64
Language: English
Original paper language: Russian
Citation: A. F. Leont'ev, “On the representation of an analytic function as a sum of periodic functions”, Math. USSR-Sb., 22:4 (1974), 517–534
Citation in format AMSBIB
\Bibitem{Leo74}
\by A.~F.~Leont'ev
\paper On the representation of an analytic function as a~sum of periodic functions
\jour Math. USSR-Sb.
\yr 1974
\vol 22
\issue 4
\pages 517--534
\mathnet{http://mi.mathnet.ru//eng/sm3472}
\crossref{https://doi.org/10.1070/SM1974v022n04ABEH002170}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=350013}
\zmath{https://zbmath.org/?q=an:0289.30006}
Linking options:
  • https://www.mathnet.ru/eng/sm3472
  • https://doi.org/10.1070/SM1974v022n04ABEH002170
  • https://www.mathnet.ru/eng/sm/v135/i4/p512
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024