Abstract:
It is shown that an arbitrary locally flat imbedding of one piecewise linear manifold into another of codimension greater than two can be changed to a piecewise linear imbedding by means of an arbitrarily small isotopy of the ambient manifold.
Bibligraphy: 5 titles.
Citation:
A. V. Chernavskii, “Piecewise linear approximation of imbeddings of manifolds in codimensions greater than two”, Math. USSR-Sb., 11:3 (1970), 465–466
\Bibitem{Che70}
\by A.~V.~Chernavskii
\paper Piecewise linear approximation of imbeddings of manifolds in codimensions greater than two
\jour Math. USSR-Sb.
\yr 1970
\vol 11
\issue 3
\pages 465--466
\mathnet{http://mi.mathnet.ru/eng/sm3464}
\crossref{https://doi.org/10.1070/SM1970v011n03ABEH001139}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=275438}
\zmath{https://zbmath.org/?q=an:0194.55703|0216.45204}
Linking options:
https://www.mathnet.ru/eng/sm3464
https://doi.org/10.1070/SM1970v011n03ABEH001139
https://www.mathnet.ru/eng/sm/v124/i3/p499
This publication is cited in the following 5 articles:
V. Z. Grines, E. Ya. Gurevich, O. V. Pochinka, “On Embedding of the Morse–Smale Diffeomorphisms in a Topological Flow”, J Math Sci, 265:6 (2022), 868
V. Z. Grines, E. Ya. Gurevich, O. V. Pochinka, “O vklyuchenii diffeomorfizmov Morsa—Smeila v topologicheskii potok”, Trudy Krymskoi osennei matematicheskoi shkoly-simpoziuma, SMFN, 66, no. 2, Rossiiskii universitet druzhby narodov, M., 2020, 160–181
V Grines, E Gurevich, O Pochinka, D Malyshev, “On topological classification of Morse–Smale diffeomorphisms on the sphere S n
(n > 3)”, Nonlinearity, 33:12 (2020), 7088
Melikhov, SA, “On maps with unstable singularities”, Topology and Its Applications, 120:1–2 (2002), 105
M. A. Shtan'ko, “Approximation of compacta in En in codimension greater than two”, Math. USSR-Sb., 19:4 (1973), 615–626