Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1970, Volume 11, Issue 3, Pages 459–463
DOI: https://doi.org/10.1070/SM1970v011n03ABEH001300
(Mi sm3463)
 

Linear representations of groups generated by reflections

O. V. Schwarzman
References:
Abstract: The following theorem is proved: two groups $\Gamma_1$ and $\Gamma_2$ acting discretely on $\Lambda^3$, with compact factor-space and isomorphic, as abstract groups, to a group generated by reflections, are conjugate in the group of motions of $\Lambda^3:g\Gamma_1g^{-1}=\Gamma_2$.
Bibliography: 8 titles.
Received: 19.06.1969
Bibliographic databases:
UDC: 519.45
Language: English
Original paper language: Russian
Citation: O. V. Schwarzman, “Linear representations of groups generated by reflections”, Math. USSR-Sb., 11:3 (1970), 459–463
Citation in format AMSBIB
\Bibitem{Sch70}
\by O.~V.~Schwarzman
\paper Linear representations of groups generated by reflections
\jour Math. USSR-Sb.
\yr 1970
\vol 11
\issue 3
\pages 459--463
\mathnet{http://mi.mathnet.ru//eng/sm3463}
\crossref{https://doi.org/10.1070/SM1970v011n03ABEH001300}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=268288}
\zmath{https://zbmath.org/?q=an:0219.22014}
Linking options:
  • https://www.mathnet.ru/eng/sm3463
  • https://doi.org/10.1070/SM1970v011n03ABEH001300
  • https://www.mathnet.ru/eng/sm/v124/i3/p494
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024