Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1970, Volume 11, Issue 2, Pages 245–256
DOI: https://doi.org/10.1070/SM1970v011n02ABEH002068
(Mi sm3449)
 

This article is cited in 39 scientific papers (total in 39 papers)

On the spectrum of the one-dimensional Schrödinger equation with a random potential

M. M. Benderskii, L. A. Pastur
References:
Abstract: Let $\mathfrak N(\lambda,a,b)$ be the number of eigenvalues not exceeding $\lambda$ for the selfadjoint boundary problem
\begin{gather*} -y''+q(x)y=\lambda y,\\ y(a)\cos\alpha-y'(a)\sin\alpha=0,\quad y(b)\cos\beta-y'(b)\sin\beta=0 \end{gather*}
with random potential $q(x)$, and let
$$ N(\lambda)=\lim_{L\to\infty}\frac{\mathfrak N(\lambda,0,\,L)}L. $$
Our problem is to clarify the conditions under which this function will exist and to indicate methods for calculating it.
In the present article we establish the existence of a nonrandom limit $N(\lambda)$ for a wide class of stationary ergodic potentials. This limit is calculated under the assumption that the potential $q(x)$ is Markovian, and the argument is based on the well-known theorems of Sturm.
At the end of the article we consider an example in which $q(x)$ is a Markov process with two states. In this case the calculations can all be carried out completely in a practical way, with the result that we obtain a formula expressing $N(\lambda)$ by means of integrals of elementary functions.
Bibliography: 9 titles.
Received: 14.07.1969
Bibliographic databases:
UDC: 517.93+530.145
Language: English
Original paper language: Russian
Citation: M. M. Benderskii, L. A. Pastur, “On the spectrum of the one-dimensional Schrödinger equation with a random potential”, Math. USSR-Sb., 11:2 (1970), 245–256
Citation in format AMSBIB
\Bibitem{BenPas70}
\by M.~M.~Benderskii, L.~A.~Pastur
\paper On~the spectrum of the one-dimensional Schr\"odinger equation with a~random potential
\jour Math. USSR-Sb.
\yr 1970
\vol 11
\issue 2
\pages 245--256
\mathnet{http://mi.mathnet.ru//eng/sm3449}
\crossref{https://doi.org/10.1070/SM1970v011n02ABEH002068}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=262623}
\zmath{https://zbmath.org/?q=an:0207.48505|0216.37301}
Linking options:
  • https://www.mathnet.ru/eng/sm3449
  • https://doi.org/10.1070/SM1970v011n02ABEH002068
  • https://www.mathnet.ru/eng/sm/v124/i2/p273
  • This publication is cited in the following 39 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:451
    Russian version PDF:149
    English version PDF:16
    References:75
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024