Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1998, Volume 189, Issue 7, Pages 1101–1113
DOI: https://doi.org/10.1070/sm1998v189n07ABEH000342
(Mi sm342)
 

This article is cited in 4 scientific papers (total in 4 papers)

Spherical convergence of the Fourier integral of the indicator function of an $N$-dimensional domain

D. A. Popov

M. V. Lomonosov Moscow State University
References:
Abstract: Convergence of the spherical means $f_\Omega (a)$ (here $f$ is the characteristic function of a compact subdomain $\mathscr D^N\in \mathbb R^N$ and $\Omega$ is the radius of a ball in the frequency range) at a point $a\in \mathbb R^N$, $a\notin \partial \mathscr D^N$ (where $\partial \mathscr D$ is the boundary of $\mathscr D^N$), can be characterized by the convergence exponent $\sigma (a\,|\,\partial \mathscr D^N)$. In the case when $|f_\Omega (a)-f(a)|\leqslant O(\Omega ^{-\gamma +\varepsilon })$ for $\gamma >0$ and each $\varepsilon>0$ as $\Omega \to \infty$, $\sigma (a\,|\,\partial \mathscr D^N)$ is the least upper bound of $\gamma$. The question of the dependence of the quantity $\sigma (a\,|\,\partial \mathscr D^N)$ on the position of the point $a\notin \partial \mathscr D^N$ and the geometry of the hypersurface $\partial \mathscr D^N$ is studied. If $\partial \mathscr D^N$ is smooth and $a\notin \mathscr K(\partial \mathscr D^N)$ (here $\mathscr K(\partial \mathscr D^N)$ is the focal surface of $\partial \mathscr D^N$), then it is shown that $\sigma (a\,|\,\partial \mathscr D^N)=1$ irrespective of $N$. A complete description of $\sigma (a\,|\,\partial \mathscr D^N)$ for domains $\mathscr D^N$ with boundary in general position and $N\leqslant 10$ is given on the basis of the theory of singularities. The question of the dimension of the divergence region $\mathscr R(\partial \mathscr D^N)\in \mathscr K(\partial \mathscr D^N)$ (where the spherical means diverge as $\Omega \to \infty$) is considered. It is shown that $\dim \mathscr R(\partial \mathscr D^N)\leqslant N-3$ for $N\geqslant 3$, while for $N\geqslant 21$ there exist hypersurfaces $\partial \mathscr D^N$ in general position such that $\dim \mathscr R(\partial \mathscr D^N)\geqslant N-21$.
Received: 23.05.1997
Bibliographic databases:
UDC: 517
MSC: Primary 42B10; Secondary 58C27
Language: English
Original paper language: Russian
Citation: D. A. Popov, “Spherical convergence of the Fourier integral of the indicator function of an $N$-dimensional domain”, Sb. Math., 189:7 (1998), 1101–1113
Citation in format AMSBIB
\Bibitem{Pop98}
\by D.~A.~Popov
\paper Spherical convergence of the~Fourier integral of the~indicator function of an~$N$-dimensional domain
\jour Sb. Math.
\yr 1998
\vol 189
\issue 7
\pages 1101--1113
\mathnet{http://mi.mathnet.ru//eng/sm342}
\crossref{https://doi.org/10.1070/sm1998v189n07ABEH000342}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1659803}
\zmath{https://zbmath.org/?q=an:0920.42004}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000077042100007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0032220876}
Linking options:
  • https://www.mathnet.ru/eng/sm342
  • https://doi.org/10.1070/sm1998v189n07ABEH000342
  • https://www.mathnet.ru/eng/sm/v189/i7/p145
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:519
    Russian version PDF:208
    English version PDF:19
    References:104
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024