Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1970, Volume 10, Issue 2, Pages 181–196
DOI: https://doi.org/10.1070/SM1970v010n02ABEH002155
(Mi sm3370)
 

This article is cited in 6 scientific papers (total in 7 papers)

On means and the Laplacian of functions on Hilbert space

I. Ya. Dorfman
References:
Abstract: In his book Problemes concrets d'analyse fonctionnelle, Paul Levy introduced the concept of the mean $M(f,a,\rho)$ of the function $f$ on Hilbert space over the ball of radius $\rho$ with center at the point $a$, and investigated the properties of the Laplacian
$$ Lf(a)=\lim_{\rho\to0}\frac{M(f,a,\rho)-f(a)}{\rho^2}, $$
but he did not determine which functions have means. Moreover, the mean $M(f,a,\rho)$ and the Laplacian $Lf(a)$ are not invariant, in general, under rotation about the point $a$.
In the present paper we give a class of functions with invariant means on Hilbert space. An example of such a class is the set of functions $f(x)$ for which $f(x)=\gamma(x)I+T(x)$, where the function $\gamma(x)$ is uniformly continuous and has invariant means, $I$ is the identity operator, and $T(x)$ is a symmetric, completely continuous operator whose eigenvalues, arranged in decreasing order of absolute value $\lambda_j(x)$, have the property that $\frac1n\sum_{i=1}^n\lambda_i(x)\to0$ uniformly in $x$ (§ 3). The invariant mean of such a function exists and is given by the formula
$$ M(f,x,r)=f(x)+\int_0^r\rho M(\gamma,x,\rho)\,d\rho, $$
and its Laplacian is $Lf(a)=\frac{\gamma(a)}2$. In § 4 we consider the Dirichlet problem and the Poisson problem for the ball and give sufficient conditions for the solution to be expressed by the Levy formulas.
Bibliography: 7 titles.
Received: 23.03.1969
Bibliographic databases:
UDC: 513.881
Language: English
Original paper language: Russian
Citation: I. Ya. Dorfman, “On means and the Laplacian of functions on Hilbert space”, Math. USSR-Sb., 10:2 (1970), 181–196
Citation in format AMSBIB
\Bibitem{Dor70}
\by I.~Ya.~Dorfman
\paper On~means and the Laplacian of functions on Hilbert space
\jour Math. USSR-Sb.
\yr 1970
\vol 10
\issue 2
\pages 181--196
\mathnet{http://mi.mathnet.ru//eng/sm3370}
\crossref{https://doi.org/10.1070/SM1970v010n02ABEH002155}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=415314}
\zmath{https://zbmath.org/?q=an:0217.17601}
Linking options:
  • https://www.mathnet.ru/eng/sm3370
  • https://doi.org/10.1070/SM1970v010n02ABEH002155
  • https://www.mathnet.ru/eng/sm/v123/i2/p192
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:417
    Russian version PDF:98
    English version PDF:8
    References:53
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024