|
This article is cited in 2 scientific papers (total in 2 papers)
Asymptotic behavior of the eigenvalues of an anharmonic oscillator
N. M. Kostenko
Abstract:
In this paper we study the properties of the spectrum of the boundary-value problem
$$
\varphi''+[\lambda-x^2-V(x)]\varphi=0,\quad-\infty<x<\infty.
$$
Let $\lambda_k$ be the points of the spectrum of this problem, arranged in order of increasing absolute value. Our main result is
Theorem. {\it Let $V(x)$ satisfy the conditions
$$
|V(x)|\leqslant M,\quad|x|\leqslant L;\qquad|V(x)|\leqslant\frac M{|x|},\quad|x|>L.
$$
Then for any $\varepsilon>0$
$$
|\lambda_k-2k-1|=o(k^{-1/2+\varepsilon})\ \text{for}\ k\to\infty.
$$ }
Bibliography: 2 titles.
Received: 05.04.1969
Citation:
N. M. Kostenko, “Asymptotic behavior of the eigenvalues of an anharmonic oscillator”, Math. USSR-Sb., 10:2 (1970), 151–163
Linking options:
https://www.mathnet.ru/eng/sm3367https://doi.org/10.1070/SM1970v010n02ABEH002153 https://www.mathnet.ru/eng/sm/v123/i2/p163
|
|