Abstract:
The existence and uniqueness of the solution in Sobolev spaces W2p (W2,1p) is proved for the first boundary value problem for elliptic (parabolic) equations of the form
λu−infα∈Usupβ∈B(α)(Lαβu+fαβ)=f.
Here Lαβu=aαβijDiju+bαβiuxi−cαβu and Diju=uxixj in the elliptic case, Diju=uxixj−δijut in the parabolic case. The subscript p takes any values close to two.
Bibliography: 10 titles.
Citation:
N. V. Krylov, “On equations of minimax type in the theory of elliptic and parabolic equations in the plane”, Math. USSR-Sb., 10:1 (1970), 1–19
\Bibitem{Kry70}
\by N.~V.~Krylov
\paper On equations of minimax type in the theory of elliptic and parabolic equations in the plane
\jour Math. USSR-Sb.
\yr 1970
\vol 10
\issue 1
\pages 1--19
\mathnet{http://mi.mathnet.ru/eng/sm3357}
\crossref{https://doi.org/10.1070/SM1970v010n01ABEH002151}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=255954}
\zmath{https://zbmath.org/?q=an:0213.11803|0215.16205}
Linking options:
https://www.mathnet.ru/eng/sm3357
https://doi.org/10.1070/SM1970v010n01ABEH002151
https://www.mathnet.ru/eng/sm/v123/i1/p3
This publication is cited in the following 10 articles:
Hongjie Dong, Doyoon Kim, “Parabolic Equations in Simple Convex Polytopes with Time Irregular Coefficients”, SIAM J. Math. Anal, 46:3 (2014), 1789
Jérôme Busca, “Existence results for bellman equations and maximum principles in unbounded domains”, Communications in Partial Differential Equations, 24:11-12 (1999), 2023
Kamynin V., “Passage to the Limit in the Inverse Problem for Nondivergent Parabolic Equations with a Final Overdetermination Condition”, Differ. Equ., 28:2 (1992), 213–218
Yu. A. Alkhutov, I. T. Mamedov, “The first boundary value problem for nondivergence second order parabolic equations with discontinuous coefficients”, Math. USSR-Sb., 59:2 (1988), 471–495
E. M. Kudlaev, “Limiting Conditional Distributions for Sums of Random Variables”, Theory Probab. Appl, 29:4 (1985), 776
P. L. Lions, Lecture Notes in Control and Information Sciences, 42, Advances in Filtering and Optimal Stochastic Control, 1982, 199
P. L. Lions, “Resolution analytique des problemes de Bellman-Dirichlet”, Acta Math, 146:1 (1981), 151
N. V. Krylov, “On passing to the limit in degenerate Bellman equations. I”, Math. USSR-Sb., 34:6 (1978), 765–783
N. V. Krylov, “Control of Markov processes and W-spaces”, Math. USSR-Izv., 5:1 (1971), 233–266
N. V. Krylov, “Bounded inhomogeneous nonlinear elliptic and parabolic equations in the plane”, Math. USSR-Sb., 11:1 (1970), 89–99