|
This article is cited in 10 scientific papers (total in 10 papers)
On equations of minimax type in the theory of elliptic and parabolic equations in the plane
N. V. Krylov
Abstract:
The existence and uniqueness of the solution in Sobolev spaces $W_p^2$ ($W_p^{2,1}$) is proved for the first boundary value problem for elliptic (parabolic) equations of the form
$$
\lambda u-\inf_{\alpha\in\mathfrak U}\sup_{\beta\in\mathfrak B(\alpha)}(L_{\alpha\beta}u+f_{\alpha\beta})=f.
$$
Here $L_{\alpha\beta}u=a_{ij}^{\alpha\beta}D_{ij}u+b_i^{\alpha\beta}u_{x_i}-c^{\alpha\beta}u$ and $D_{ij}u=u_{x_ix_j}$ in the elliptic case, $D_{ij}u=u_{x_ix_j}-\delta_{ij}u_t$ in the parabolic case. The subscript $p$ takes any values close to two.
Bibliography: 10 titles.
Received: 08.12.1968
Citation:
N. V. Krylov, “On equations of minimax type in the theory of elliptic and parabolic equations in the plane”, Math. USSR-Sb., 10:1 (1970), 1–19
Linking options:
https://www.mathnet.ru/eng/sm3357https://doi.org/10.1070/SM1970v010n01ABEH002151 https://www.mathnet.ru/eng/sm/v123/i1/p3
|
|