Abstract:
The existence and uniqueness of the solution in Sobolev spaces W2p (W2,1p) is proved for the first boundary value problem for elliptic (parabolic) equations of the form
λu−infα∈Usupβ∈B(α)(Lαβu+fαβ)=f.
Here Lαβu=aαβijDiju+bαβiuxi−cαβu and Diju=uxixj in the elliptic case, Diju=uxixj−δijut in the parabolic case. The subscript p takes any values close to two.
Bibliography: 10 titles.
Citation:
N. V. Krylov, “On equations of minimax type in the theory of elliptic and parabolic equations in the plane”, Math. USSR-Sb., 10:1 (1970), 1–19
\Bibitem{Kry70}
\by N.~V.~Krylov
\paper On equations of minimax type in the theory of elliptic and parabolic equations in the plane
\jour Math. USSR-Sb.
\yr 1970
\vol 10
\issue 1
\pages 1--19
\mathnet{http://mi.mathnet.ru/eng/sm3357}
\crossref{https://doi.org/10.1070/SM1970v010n01ABEH002151}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=255954}
\zmath{https://zbmath.org/?q=an:0213.11803|0215.16205}
Linking options:
https://www.mathnet.ru/eng/sm3357
https://doi.org/10.1070/SM1970v010n01ABEH002151
https://www.mathnet.ru/eng/sm/v123/i1/p3
This publication is cited in the following 10 articles: