Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1973, Volume 21, Issue 2, Pages 317–338
DOI: https://doi.org/10.1070/SM1973v021n02ABEH002020
(Mi sm3351)
 

This article is cited in 1 scientific paper (total in 1 paper)

Some questions of spectral synthesis on spheres

V. F. Osipov
References:
Abstract: This paper considers the Banach algebra $L^1(R^n)$ with the usual norm and convolution as multiplication. A characterization is given for closed ideals of $L^1(R^n)$ which are rotation invariant and have $S^{n-1}$ as spectrum, in terms of annihilators of certain collections of pseudomeasures. The main result of the paper is connected with a construction which yields an uncountable chain of closed ideals intermediate between neighboring invariant closed ideals with spectrum $S^{n-1}$. This construction associates an ideal $I(E)$ with a closed subset $E\subset S^{n-1}$. It is shown that if $\operatorname{int}E_1\neq\operatorname{int}E_2$ then $I(E_1)\neq I(E_2)$. Another result is the lack of a continuous projection from the largest to the smallest ideal when $n =3$, and when $n>3$, from an invariant ideal onto the neighboring smaller invariant ideal. A certain algebra of functions on the sphere which arises naturally in the construction of the intermediate ideals is also studied.
Bibliography: 18 titles.
Received: 30.12.1971 and 26.03.1973
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1973, Volume 92(134), Number 2(10), Pages 319–342
Bibliographic databases:
UDC: 517.512.2/4
MSC: Primary 43A45, 43A75; Secondary 43A25, 43A90
Language: English
Original paper language: Russian
Citation: V. F. Osipov, “Some questions of spectral synthesis on spheres”, Mat. Sb. (N.S.), 92(134):2(10) (1973), 319–342; Math. USSR-Sb., 21:2 (1973), 317–338
Citation in format AMSBIB
\Bibitem{Osi73}
\by V.~F.~Osipov
\paper Some questions of spectral synthesis on spheres
\jour Mat. Sb. (N.S.)
\yr 1973
\vol 92(134)
\issue 2(10)
\pages 319--342
\mathnet{http://mi.mathnet.ru/sm3351}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=350326}
\zmath{https://zbmath.org/?q=an:0284.43007}
\transl
\jour Math. USSR-Sb.
\yr 1973
\vol 21
\issue 2
\pages 317--338
\crossref{https://doi.org/10.1070/SM1973v021n02ABEH002020}
Linking options:
  • https://www.mathnet.ru/eng/sm3351
  • https://doi.org/10.1070/SM1973v021n02ABEH002020
  • https://www.mathnet.ru/eng/sm/v134/i2/p319
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:314
    Russian version PDF:87
    English version PDF:11
    References:61
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024