Loading [MathJax]/jax/output/CommonHTML/jax.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1973, Volume 20, Issue 4, Pages 557–573
DOI: https://doi.org/10.1070/SM1973v020n04ABEH001982
(Mi sm3321)
 

Integrability of trigonometric series. The estimation of the integral modulus of continuity

S. A. Telyakovskii
References:
Abstract: Let am tend to zero and let the quantities
Bn=nm=1(mn)k|Δam|+m=n+1|Δam|++nm=2(mn)k|[m/2]i=1ΔamiΔam+ii|+m=n+1|[m/2]i=1ΔamiΔam+ii|.
be finite. We put f(x)=a02+m=1amcosmx and g(x)=m=1amsinmx.
It is shown that the integral modulus of continuity of kth order for the function f satisfies the estimate ωk(f,1n)L=O(Bn), and that if the series |am|m, converges then
ωk(g,1n)L=2kπm=n|am|m+O(Bn).

Bibliography: 10 titles.
Received: 27.12.1972
Bibliographic databases:
Document Type: Article
UDC: 517.522.3
MSC: 26A15, 42A16
Language: English
Original paper language: Russian
Citation: S. A. Telyakovskii, “Integrability of trigonometric series. The estimation of the integral modulus of continuity”, Math. USSR-Sb., 20:4 (1973), 557–573
Citation in format AMSBIB
\Bibitem{Tel73}
\by S.~A.~Telyakovskii
\paper Integrability of trigonometric series. The estimation of the integral modulus of continuity
\jour Math. USSR-Sb.
\yr 1973
\vol 20
\issue 4
\pages 557--573
\mathnet{http://mi.mathnet.ru/eng/sm3321}
\crossref{https://doi.org/10.1070/SM1973v020n04ABEH001982}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=330888}
\zmath{https://zbmath.org/?q=an:0279.42005}
Linking options:
  • https://www.mathnet.ru/eng/sm3321
  • https://doi.org/10.1070/SM1973v020n04ABEH001982
  • https://www.mathnet.ru/eng/sm/v133/i4/p537
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:443
    Russian version PDF:120
    English version PDF:19
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025