Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1973, Volume 20, Issue 4, Pages 557–573
DOI: https://doi.org/10.1070/SM1973v020n04ABEH001982
(Mi sm3321)
 

Integrability of trigonometric series. The estimation of the integral modulus of continuity

S. A. Telyakovskii
References:
Abstract: Let $a_m$ tend to zero and let the quantities
\begin{align*} B_n&=\sum_{m=1}^n\biggl(\frac mn\biggr)^k|\Delta a_m|+\sum_{m=n+1}^\infty|\Delta a_m|+ \\ &\qquad+\sum_{m=2}^n\biggl(\frac mn\biggr)^k\biggl|\sum_{i=1}^{[m/2]}\frac{\Delta a_{m-i}-\Delta a_{m+i}}i\biggr|+\sum_{m=n+1}^\infty\biggl|\sum_{i=1}^{[m/2]}\frac{\Delta a_{m-i}-\Delta a_{m+i}}i\biggr|. \end{align*}
be finite. We put $f(x)=\frac{a_0}2+\sum_{m=1}^\infty a_m\cos mx$ and $g(x)=\sum_{m=1}^\infty a_m\sin mx$.
It is shown that the integral modulus of continuity of $k$th order for the function $f$ satisfies the estimate $\omega_k\bigl(f,\frac1n\bigr)_L=O(B_n)$, and that if the series $\sum\frac{|a_m|}m$, converges then
$$ \omega_k\biggl(g,\frac1n\biggr)_L=\frac{2^k}\pi\sum_{m=n}^\infty\frac{|a_m|}m+O(B_n). $$

Bibliography: 10 titles.
Received: 27.12.1972
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1973, Volume 91(133), Number 4(8), Pages 537–553
Bibliographic databases:
Document Type: Article
UDC: 517.522.3
MSC: 26A15, 42A16
Language: English
Original paper language: Russian
Citation: S. A. Telyakovskii, “Integrability of trigonometric series. The estimation of the integral modulus of continuity”, Mat. Sb. (N.S.), 91(133):4(8) (1973), 537–553; Math. USSR-Sb., 20:4 (1973), 557–573
Citation in format AMSBIB
\Bibitem{Tel73}
\by S.~A.~Telyakovskii
\paper Integrability of trigonometric series. The estimation of the integral modulus of continuity
\jour Mat. Sb. (N.S.)
\yr 1973
\vol 91(133)
\issue 4(8)
\pages 537--553
\mathnet{http://mi.mathnet.ru/sm3321}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=330888}
\zmath{https://zbmath.org/?q=an:0279.42005}
\transl
\jour Math. USSR-Sb.
\yr 1973
\vol 20
\issue 4
\pages 557--573
\crossref{https://doi.org/10.1070/SM1973v020n04ABEH001982}
Linking options:
  • https://www.mathnet.ru/eng/sm3321
  • https://doi.org/10.1070/SM1973v020n04ABEH001982
  • https://www.mathnet.ru/eng/sm/v133/i4/p537
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:401
    Russian version PDF:112
    English version PDF:14
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024