|
Integrability of trigonometric series. The estimation of the integral modulus of continuity
S. A. Telyakovskii
Abstract:
Let $a_m$ tend to zero and let the quantities
\begin{align*}
B_n&=\sum_{m=1}^n\biggl(\frac mn\biggr)^k|\Delta a_m|+\sum_{m=n+1}^\infty|\Delta a_m|+
\\
&\qquad+\sum_{m=2}^n\biggl(\frac mn\biggr)^k\biggl|\sum_{i=1}^{[m/2]}\frac{\Delta a_{m-i}-\Delta a_{m+i}}i\biggr|+\sum_{m=n+1}^\infty\biggl|\sum_{i=1}^{[m/2]}\frac{\Delta a_{m-i}-\Delta a_{m+i}}i\biggr|.
\end{align*}
be finite. We put $f(x)=\frac{a_0}2+\sum_{m=1}^\infty a_m\cos mx$ and
$g(x)=\sum_{m=1}^\infty a_m\sin mx$.
It is shown that the integral modulus of continuity of $k$th order for the function $f$ satisfies the estimate $\omega_k\bigl(f,\frac1n\bigr)_L=O(B_n)$, and that if the series $\sum\frac{|a_m|}m$, converges then
$$
\omega_k\biggl(g,\frac1n\biggr)_L=\frac{2^k}\pi\sum_{m=n}^\infty\frac{|a_m|}m+O(B_n).
$$
Bibliography: 10 titles.
Received: 27.12.1972
Citation:
S. A. Telyakovskii, “Integrability of trigonometric series. The estimation of the integral modulus of continuity”, Mat. Sb. (N.S.), 91(133):4(8) (1973), 537–553; Math. USSR-Sb., 20:4 (1973), 557–573
Linking options:
https://www.mathnet.ru/eng/sm3321https://doi.org/10.1070/SM1973v020n04ABEH001982 https://www.mathnet.ru/eng/sm/v133/i4/p537
|
Statistics & downloads: |
Abstract page: | 401 | Russian version PDF: | 112 | English version PDF: | 14 | References: | 47 |
|