|
Integrability of trigonometric series. The estimation of the integral modulus of continuity
S. A. Telyakovskii
Abstract:
Let am tend to zero and let the quantities
Bn=n∑m=1(mn)k|Δam|+∞∑m=n+1|Δam|++n∑m=2(mn)k|[m/2]∑i=1Δam−i−Δam+ii|+∞∑m=n+1|[m/2]∑i=1Δam−i−Δam+ii|.
be finite. We put f(x)=a02+∑∞m=1amcosmx and
g(x)=∑∞m=1amsinmx.
It is shown that the integral modulus of continuity of kth order for the function f satisfies the estimate ωk(f,1n)L=O(Bn), and that if the series ∑|am|m, converges then
ωk(g,1n)L=2kπ∞∑m=n|am|m+O(Bn).
Bibliography: 10 titles.
Received: 27.12.1972
Citation:
S. A. Telyakovskii, “Integrability of trigonometric series. The estimation of the integral modulus of continuity”, Math. USSR-Sb., 20:4 (1973), 557–573
Linking options:
https://www.mathnet.ru/eng/sm3321https://doi.org/10.1070/SM1973v020n04ABEH001982 https://www.mathnet.ru/eng/sm/v133/i4/p537
|
Statistics & downloads: |
Abstract page: | 443 | Russian version PDF: | 120 | English version PDF: | 19 | References: | 60 |
|