Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1998, Volume 189, Issue 6, Pages 931–954
DOI: https://doi.org/10.1070/sm1998v189n06ABEH000328
(Mi sm328)
 

This article is cited in 9 scientific papers (total in 9 papers)

The defects of admissible balls and octahedra in a lattice, and systems of generic representatives

A. M. Raigorodskii

M. V. Lomonosov Moscow State University
References:
Abstract: Let ${\mathscr E}=O\,\mathbf e_1,\dots,\mathbf e_n$ be the frame of unit coordinate vectors, let $\Lambda \subset \mathbb R^n$ such that ${\mathbb Z}^n\subset \Lambda$, let ${\mathscr O}_{\mathscr E}^n$ be the unit octahedron, and let ${\mathscr B}_{\mathscr E}^n$ be the unit ball. A set $\Omega \in \{{\mathscr O}_{\mathscr E}^n,{\mathscr B}_{\mathscr E}^n\}$ is said to be admissible in $\Lambda$ if $\Omega \cap \Lambda =\{O,\pm \mathbf e_1,\dots ,\pm \mathbf e_n\}$. The defect $d(\Omega;\Lambda)$, with respect to $\Lambda$, of a set $\Omega$ admissible in $\Lambda$ is the smallest number of vectors to be deleted from ${\mathscr E}$ in order that the remaining system can be complemented to a basis in $\Lambda$. Let $d_n(\Omega)=\max _\Lambda d(\Omega;\Lambda)$ and let $d_n^*(\Omega)=\max _\Lambda ^*d(\Omega;\Lambda)$, where the maximum is taken over all $\Lambda$ in the first case and over all $\Lambda$ such that $\Lambda /{\mathbb Z}^n$ is a cyclic group in the second. It is shown that $d_n^*(\Omega)\gg \frac n{\log n}(\log \log n)^2$ and $d_n(\Omega)\geqslant n-c\frac n{\log n}$, where $c$ is an absolute constant.These results are obtained using methods of geometry and combinatorial analysis.
Received: 31.10.1996
Bibliographic databases:
UDC: 513.85+519.1
MSC: Primary 11H31, 52C17; Secondary 11H55
Language: English
Original paper language: Russian
Citation: A. M. Raigorodskii, “The defects of admissible balls and octahedra in a lattice, and systems of generic representatives”, Sb. Math., 189:6 (1998), 931–954
Citation in format AMSBIB
\Bibitem{Rai98}
\by A.~M.~Raigorodskii
\paper The defects of admissible balls and octahedra in a~lattice, and systems of generic representatives
\jour Sb. Math.
\yr 1998
\vol 189
\issue 6
\pages 931--954
\mathnet{http://mi.mathnet.ru//eng/sm328}
\crossref{https://doi.org/10.1070/sm1998v189n06ABEH000328}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1657364}
\zmath{https://zbmath.org/?q=an:0926.52019}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000075975300013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0032220826}
Linking options:
  • https://www.mathnet.ru/eng/sm328
  • https://doi.org/10.1070/sm1998v189n06ABEH000328
  • https://www.mathnet.ru/eng/sm/v189/i6/p117
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:629
    Russian version PDF:295
    English version PDF:14
    References:68
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024