Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1972, Volume 18, Issue 2, Pages 181–189
DOI: https://doi.org/10.1070/SM1972v018n02ABEH001753
(Mi sm3225)
 

This article is cited in 21 scientific papers (total in 21 papers)

Functions with given estimate for $\partial f/\partial\overline z$, and N. Levinson's theorem

E. M. Dyn'kin
References:
Abstract: In this paper it is shown that a twice continuously differentiable function $\varphi$ on the unit circle with Fourier coefficients $\{\widehat\varphi(n)\}$ admits a continuously differentiable extension $f$ to the whole plane such that
$$ \frac{\partial f}{\partial\overline z}=O[h(|1-|z||)] $$
(here $h$ is a given weight with $h(+0)=0)$ if $\varphi(n)=O(n^{-1}a_n)$, where
$$ a_n=\int_0^1h(r)(1-r)^{|n|}\,dr,\qquad n=0,\pm1,\pm2,\dots\,. $$

If $\int_0\ln\ln\frac1{h(r)}\,dr<+\infty$, then the class of such functions $\varphi$ turns out to be non-quasi-analytic. Hence a new proof of the known theorem of N. Levinson on the normality of families of analytic functions is derived.
Bibliography: 7 titles.
Received: 14.04.1972
Bibliographic databases:
UDC: 517.53
MSC: 30A74, 30A78
Language: English
Original paper language: Russian
Citation: E. M. Dyn'kin, “Functions with given estimate for $\partial f/\partial\overline z$, and N. Levinson's theorem”, Math. USSR-Sb., 18:2 (1972), 181–189
Citation in format AMSBIB
\Bibitem{Dyn72}
\by E.~M.~Dyn'kin
\paper Functions with given estimate for $\partial f/\partial\overline z$, and N.~Levinson's theorem
\jour Math. USSR-Sb.
\yr 1972
\vol 18
\issue 2
\pages 181--189
\mathnet{http://mi.mathnet.ru//eng/sm3225}
\crossref{https://doi.org/10.1070/SM1972v018n02ABEH001753}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=325978}
\zmath{https://zbmath.org/?q=an:0251.30033}
Linking options:
  • https://www.mathnet.ru/eng/sm3225
  • https://doi.org/10.1070/SM1972v018n02ABEH001753
  • https://www.mathnet.ru/eng/sm/v131/i2/p182
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:621
    Russian version PDF:177
    English version PDF:19
    References:71
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024