Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1995, Volume 186, Issue 4, Pages 591–609
DOI: https://doi.org/10.1070/SM1995v186n04ABEH000032
(Mi sm32)
 

Asymptotic behaviour of the fundamental solution of a second-order parabolic equation

E. F. Lelikova

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
References:
Abstract: We study the asymptotic behaviour as $t\to\infty$ of the fundamental solution (FS) $G(x,s,t)$ of the Cauchy problem for the parabolic equation $G_t-G_{xx}+a(x)G=0$, $x\in{\mathbb R}^1$, $t>0$. We suppose that the coefficient $a(x)$ can be written as $x\to\pm\infty$ in the form $a(x)=a_2^\pm x^{-2}+\varphi (x)$, where the function $\phi(x)$ has an asymptotic expansion as $x\to\pm\infty$ in positive powers of $x^{-1}$ and $|\varphi (x)|=o(|x|^{-2})$. We construct and justify the asymptotic expansion of the FS $G(z,s,t)$ as $t\to\infty$ up to any power of $t^{-1}$ for the whole plane $x,s\in{\mathbb R}^1$.
Received: 23.05.1994
Russian version:
Matematicheskii Sbornik, 1995, Volume 186, Number 4, Pages 125–142
Bibliographic databases:
UDC: 517.9
MSC: 35K15, 35B40
Language: English
Original paper language: Russian
Citation: E. F. Lelikova, “Asymptotic behaviour of the fundamental solution of a second-order parabolic equation”, Mat. Sb., 186:4 (1995), 125–142; Sb. Math., 186:4 (1995), 591–609
Citation in format AMSBIB
\Bibitem{Lel95}
\by E.~F.~Lelikova
\paper Asymptotic behaviour of the~fundamental solution of a~second-order parabolic equation
\jour Mat. Sb.
\yr 1995
\vol 186
\issue 4
\pages 125--142
\mathnet{http://mi.mathnet.ru/sm32}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1336940}
\zmath{https://zbmath.org/?q=an:0836.35059}
\transl
\jour Sb. Math.
\yr 1995
\vol 186
\issue 4
\pages 591--609
\crossref{https://doi.org/10.1070/SM1995v186n04ABEH000032}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RZ92200015}
Linking options:
  • https://www.mathnet.ru/eng/sm32
  • https://doi.org/10.1070/SM1995v186n04ABEH000032
  • https://www.mathnet.ru/eng/sm/v186/i4/p125
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:448
    Russian version PDF:121
    English version PDF:14
    References:47
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024