|
This article is cited in 9 scientific papers (total in 9 papers)
On existence conditions for the Stieltjes integral
V. I. Matsaev, M. Z. Solomyak
Abstract:
A modification of the definition of the Stieltjes integral $\int_0^1f\,dg$ is proposed, and it is shown that this integral exists if $g\in\operatorname{Lip}\alpha$, $f\in W_1^{1-\alpha}$, and $0<\alpha<1$ ($W_1^{1-\alpha}$ is the Sobolev–Slobodetskii class. It is shown that this integral defines a general form of a linear functional on $W_1^{1-\alpha}$ and on the class $\operatorname{Lip}_0\alpha$ of functions $g$ for which $g(x)-g(y)=o(|x-y|^\alpha)$. Applications to the integration of abstract functions and to the theory of double operator integrals are given.
Bibliography: 8 titles.
Received: 18.06.1971
Citation:
V. I. Matsaev, M. Z. Solomyak, “On existence conditions for the Stieltjes integral”, Mat. Sb. (N.S.), 88(130):4(8) (1972), 522–535; Math. USSR-Sb., 17:4 (1972), 515–527
Linking options:
https://www.mathnet.ru/eng/sm3194https://doi.org/10.1070/SM1972v017n04ABEH001600 https://www.mathnet.ru/eng/sm/v130/i4/p522
|
Statistics & downloads: |
Abstract page: | 715 | Russian version PDF: | 383 | English version PDF: | 10 | References: | 55 |
|