Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1998, Volume 189, Issue 5, Pages 639–656
DOI: https://doi.org/10.1070/sm1998v189n05ABEH000317
(Mi sm317)
 

Order estimates of the modulus of variation of the sum of a lacunary trigonometric series

A. S. Belov

Ivanovo State University
References:
Abstract: We find order estimates for the modulus of variation and the averaged modulus of the sum of a lacunary trigonometric series in terms of its coefficients. These interesting global characteristics of a function and their applications have been studied in papers by Chanturiya, Dolzhenko, Sevast'yanov, Sendov, Popov, and others. Since the sum of a lacunary trigonometric series has frequently been used in the theory of functions to provide an example of a function having one property or another, it is useful to know as much as possible about such a function, especially such global characteristics as the modulus of variation and the averaged modulus. We also give necessary and sufficient conditions for the sum of a lacunary trigonometric series to belong to certain classes of functions defined in terms of these characteristics.
Received: 20.02.1998
Bibliographic databases:
UDC: 517.5
MSC: Primary 42A55; Secondary 42A16, 26A15
Language: English
Original paper language: Russian
Citation: A. S. Belov, “Order estimates of the modulus of variation of the sum of a lacunary trigonometric series”, Sb. Math., 189:5 (1998), 639–656
Citation in format AMSBIB
\Bibitem{Bel98}
\by A.~S.~Belov
\paper Order estimates of the~modulus of variation of the~sum of a~lacunary trigonometric series
\jour Sb. Math.
\yr 1998
\vol 189
\issue 5
\pages 639--656
\mathnet{http://mi.mathnet.ru//eng/sm317}
\crossref{https://doi.org/10.1070/sm1998v189n05ABEH000317}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1639165}
\zmath{https://zbmath.org/?q=an:0917.42011}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000075975300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0032220821}
Linking options:
  • https://www.mathnet.ru/eng/sm317
  • https://doi.org/10.1070/sm1998v189n05ABEH000317
  • https://www.mathnet.ru/eng/sm/v189/i5/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025