Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1972, Volume 17, Issue 2, Pages 289–316
DOI: https://doi.org/10.1070/SM1972v017n02ABEH001506
(Mi sm3160)
 

This article is cited in 10 scientific papers (total in 10 papers)

On a Stein manifold the Dolbeault complex splits in positive dimensions

V. P. Palamodov
References:
Abstract: In this paper we find necessary and sufficient conditions for the $\overline\partial$ operator, acting in the Dolbeault complex of an analytic locally free sheaf of finite type on a complex manifold, to split in a given dimension, i.e. to possess a linear continuous right inverse operator. In particular, from this it follows that on a Stein manifold the $\overline\partial$ operator always splits in all positive dimensions, while it does not split in dimension zero. We also consider some questions connected with this; in particular, the splitting of operators in the Frechet spaces and the splitting of the de Rham complex on a differentiable manifold.
Bibliography: 11 titles.
Received: 28.05.1971
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1972, Volume 88(130), Number 2(6), Pages 287–315
Bibliographic databases:
UDC: 513.836
MSC: Primary 32C10, 32C35, 55B05; Secondary 35N15, 32E10, 18A20
Language: English
Original paper language: Russian
Citation: V. P. Palamodov, “On a Stein manifold the Dolbeault complex splits in positive dimensions”, Mat. Sb. (N.S.), 88(130):2(6) (1972), 287–315; Math. USSR-Sb., 17:2 (1972), 289–316
Citation in format AMSBIB
\Bibitem{Pal72}
\by V.~P.~Palamodov
\paper On a~Stein manifold the Dolbeault complex splits in positive dimensions
\jour Mat. Sb. (N.S.)
\yr 1972
\vol 88(130)
\issue 2(6)
\pages 287--315
\mathnet{http://mi.mathnet.ru/sm3160}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=313540}
\zmath{https://zbmath.org/?q=an:0255.32002}
\transl
\jour Math. USSR-Sb.
\yr 1972
\vol 17
\issue 2
\pages 289--316
\crossref{https://doi.org/10.1070/SM1972v017n02ABEH001506}
Linking options:
  • https://www.mathnet.ru/eng/sm3160
  • https://doi.org/10.1070/SM1972v017n02ABEH001506
  • https://www.mathnet.ru/eng/sm/v130/i2/p287
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:282
    Russian version PDF:89
    English version PDF:23
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024