Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1972, Volume 17, Issue 2, Pages 279–288
DOI: https://doi.org/10.1070/SM1972v017n02ABEH001505
(Mi sm3159)
 

This article is cited in 5 scientific papers (total in 5 papers)

Functions of bounded $q$-integral $p$-variation and imbedding theorems

A. P. Terekhin
References:
Abstract: For a function of one real variable there is defined a notion of $q$-integral $p$-variation generalizing Wiener $p$-variation. In terms of this notion there is given a necessary and sufficient condition that a function in $L_q$ have a higher derivative in $L_p$ ($p\leqslant q$), and also that the derivative have a definite smoothness in $L_p$. In addition, embedding theorems with inversion are proved in the periodic case for generalized Lipschitz classes in $L_p$.
Bibliography: 9 titles.
Received: 03.05.1971
Bibliographic databases:
UDC: 517.51
MSC: Primary 26A45; Secondary 26A16, 26A24
Language: English
Original paper language: Russian
Citation: A. P. Terekhin, “Functions of bounded $q$-integral $p$-variation and imbedding theorems”, Math. USSR-Sb., 17:2 (1972), 279–288
Citation in format AMSBIB
\Bibitem{Ter72}
\by A.~P.~Terekhin
\paper Functions of bounded $q$-integral $p$-variation and imbedding theorems
\jour Math. USSR-Sb.
\yr 1972
\vol 17
\issue 2
\pages 279--288
\mathnet{http://mi.mathnet.ru//eng/sm3159}
\crossref{https://doi.org/10.1070/SM1972v017n02ABEH001505}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=303283}
\zmath{https://zbmath.org/?q=an:0262.26011}
Linking options:
  • https://www.mathnet.ru/eng/sm3159
  • https://doi.org/10.1070/SM1972v017n02ABEH001505
  • https://www.mathnet.ru/eng/sm/v130/i2/p277
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:412
    Russian version PDF:162
    English version PDF:19
    References:72
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024