|
This article is cited in 14 scientific papers (total in 14 papers)
Convex operator functions
F. A. Berezin
Abstract:
Let $\varphi(x)$ be a convex downwards function, $A>0$ a selfadjoint operator in a Hilbert space $H$, $P$ an orthogonal projector in $H$; suppose $D_A\cap PH$ is dense in $PH$, and let $A_p$ be the Friedrichs extension of the operator $PAP$ defined on $D_A\cap PH$.
The inequality $\mathrm{Sp}\varphi(A_p)\leqslant\mathrm{Sp}\varphi(PAP)$ is proved. An estimate for the Jacobi $\theta$-function and a distant generalization of the Szasz inequality are obtained as corollaries.
Bibliography: 3 titles.
Received: 26.04.1971
Citation:
F. A. Berezin, “Convex operator functions”, Math. USSR-Sb., 17:2 (1972), 269–277
Linking options:
https://www.mathnet.ru/eng/sm3158https://doi.org/10.1070/SM1972v017n02ABEH001504 https://www.mathnet.ru/eng/sm/v130/i2/p268
|
Statistics & downloads: |
Abstract page: | 497 | Russian version PDF: | 191 | English version PDF: | 33 | References: | 63 |
|