Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1998, Volume 189, Issue 3, Pages 461–480
DOI: https://doi.org/10.1070/sm1998v189n03ABEH000314
(Mi sm314)
 

This article is cited in 7 scientific papers (total in 7 papers)

Fixed-point theorems for a controlled withdrawal of the convexity of the values of a set-valued map

P. V. Semenov

Moscow State Pedagogical University
References:
Abstract: The question of the extent of the possible weakening of the convexity condition for the values of set-valued maps in the classical fixed-point theorems of Kakutani, Bohnenblust-Karlin, and Gliksberg is discussed. For an answer, one associates with each closed subset PP of a Banach space a numerical function αP:(0,)[0,), which is called the function of non-convexity of P. The closer αP is to zero, the 'more convex' is P. The equality αP0 is equivalent to the convexity of P. Results on selections, approximations, and fixed points for set-valued maps F of finite- and infinite-dimensional paracompact sets are established in which the equality αF(x)0 is replaced by conditions of the kind: "αF(x) is less than 1". Several formalizations of the last condition are compared and the topological stability of constraints of this type is shown.
Received: 29.04.1997
Bibliographic databases:
UDC: 513.83
MSC: Primary 54C60, 55M20; Secondary 54C65, 54C55
Language: English
Original paper language: Russian
Citation: P. V. Semenov, “Fixed-point theorems for a controlled withdrawal of the convexity of the values of a set-valued map”, Sb. Math., 189:3 (1998), 461–480
Citation in format AMSBIB
\Bibitem{Sem98}
\by P.~V.~Semenov
\paper Fixed-point theorems for a~controlled withdrawal of the convexity of the values of a~set-valued map
\jour Sb. Math.
\yr 1998
\vol 189
\issue 3
\pages 461--480
\mathnet{http://mi.mathnet.ru/eng/sm314}
\crossref{https://doi.org/10.1070/sm1998v189n03ABEH000314}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1617852}
\zmath{https://zbmath.org/?q=an:0912.54036}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000074678200007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0032363315}
Linking options:
  • https://www.mathnet.ru/eng/sm314
  • https://doi.org/10.1070/sm1998v189n03ABEH000314
  • https://www.mathnet.ru/eng/sm/v189/i3/p141
  • This publication is cited in the following 7 articles:
    1. Takamitsu Yamauchi, “Continuous selections for proximal continuous paraconvex-valued mappings”, Topology and its Applications, 2014  crossref  mathscinet  scopus  scopus  scopus
    2. Semenov P.V., “On a contractivity condition in fixed point theory and the theory of selections”, Fixed Point Theory and its Applications, Banach Center Publications, 77, 2007, 239–245  crossref  mathscinet  zmath  isi
    3. P. V. Semenov, “Fixed Points of Multivalued Contractions”, Funct. Anal. Appl., 36:2 (2002), 159–161  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    4. D. Repovš, P. V. Semenov, “On the Relation between the Nonconvexity of a Set and the Nonconvexity of Its ε-Neighborhoods”, Math. Notes, 70:2 (2001), 221–232  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    5. Semenov, PV, “On the Lebesgue function of open coverings”, Topology and Its Applications, 107:1–2 (2000), 147  crossref  mathscinet  zmath  isi  elib
    6. Repovs, D, “Continuous selections as uniform limits of delta-continuous epsilon-selections”, Set-Valued Analysis, 7:3 (1999), 239  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    7. P. V. Semenov, “Nonconvexity in problems of multivalued calculus”, J. Math. Sci. (New York), 100:6 (2000), 2682–2699  mathnet  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:671
    Russian version PDF:390
    English version PDF:39
    References:91
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025