Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1998, Volume 189, Issue 4, Pages 561–601
DOI: https://doi.org/10.1070/sm1998v189n04ABEH000312
(Mi sm312)
 

This article is cited in 8 scientific papers (total in 8 papers)

Direct and converse theorems in problems of approximation by vectors of finite degree

G. V. Radzievskii

Institute of Mathematics, Ukrainian National Academy of Sciences
References:
Abstract: Let $A$ be a linear operator in a complex Banach space $X$ with domain $\mathfrak D(A)$ and a non-empty resolvent set. An element $g\in \mathfrak D_\infty (A):=\bigcap _{j=0,1,\dots }\mathfrak D(A^j)$ is called a vector of degree at most $\zeta (>0)$ with respect to $A$ if $\|A^jg\|_X\leqslant c(g)\zeta ^j$, $j=0,1,\dots $ . The set of vectors of degree at most $\zeta$ is denoted by $\mathfrak G_\zeta (A)$. The quantity $E_\zeta (f,A)_X=\inf _{g\in \mathfrak G_\zeta (A)}\|f-g\|_X$ is introduced and estimated in terms of the $K$-functional $K\bigl (\zeta ^{-r},f;X,\mathfrak D(A^r)\bigr ) =\inf _{g\in \mathfrak D(A^r)}\bigl (\|f-g\|_X+\zeta ^{-r}\|A^rf\|_X\bigr )$ (the direct theorem). An estimate of this $K$-functional in terms of $E_\zeta (f,A)_X$ and $\|f\|_X$ is established (the converse theorem). Using the estimates obtained, necessary and sufficient conditions for the following properties are found in terms of $E_\zeta (f,A)_X$: 1) $f\in \mathfrak D_\infty (A)$; 2) the series $e^{zA}f:=\sum _{r=0}^\infty (z^rA^rf)/(r!)$ converges in some disc; 3) the series $e^{zA}f$ converges in the entire complex plane. The growth order and the type of the entire function $e^{zA}f$ are calculated in terms of $E_\zeta (f,A)_X$.
Received: 06.05.1997
Russian version:
Matematicheskii Sbornik, 1998, Volume 189, Number 4, Pages 83–124
DOI: https://doi.org/10.4213/sm312
Bibliographic databases:
UDC: 517.43+517.5
MSC: 41A65, 41A17
Language: English
Original paper language: Russian
Citation: G. V. Radzievskii, “Direct and converse theorems in problems of approximation by vectors of finite degree”, Mat. Sb., 189:4 (1998), 83–124; Sb. Math., 189:4 (1998), 561–601
Citation in format AMSBIB
\Bibitem{Rad98}
\by G.~V.~Radzievskii
\paper Direct and converse theorems in problems of approximation by vectors of finite degree
\jour Mat. Sb.
\yr 1998
\vol 189
\issue 4
\pages 83--124
\mathnet{http://mi.mathnet.ru/sm312}
\crossref{https://doi.org/10.4213/sm312}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1632339}
\zmath{https://zbmath.org/?q=an:0923.41020}
\transl
\jour Sb. Math.
\yr 1998
\vol 189
\issue 4
\pages 561--601
\crossref{https://doi.org/10.1070/sm1998v189n04ABEH000312}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000074678200011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0032382168}
Linking options:
  • https://www.mathnet.ru/eng/sm312
  • https://doi.org/10.1070/sm1998v189n04ABEH000312
  • https://www.mathnet.ru/eng/sm/v189/i4/p83
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:562
    Russian version PDF:242
    English version PDF:24
    References:107
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024