|
This article is cited in 3 scientific papers (total in 3 papers)
On a global property of a matrix-valued function of one variable
B. V. Verbitskii
Abstract:
In this paper we prove the following assertion. Let $A(x)$ be an $n\times n$ matrix whose elements belong to $C^k[0,b]$, where $k\geqslant0$ and $0<b<\infty$. Furthermore, let $\{\sigma_j(x)\}_1^m$ ($m\leqslant n$) be the distinct eigenvalues of $A(x)$ belonging to $C^k[0,b]$. Then, if $A(x)$ for all $x\in[0,b]$ is similar to a Jordan matrix $J(x)$, in which to each eigenvalue $\sigma_j(x)$ there corresponds a constant number of Jordan blocks whose dimension is also independent of $x\in[0,b]$, it follows that $A(x)$ is smoothly similar to $J(x)$ on $[0,b]$.
Bibliography: 6 titles.
Received: 16.05.1972
Citation:
B. V. Verbitskii, “On a global property of a matrix-valued function of one variable”, Mat. Sb. (N.S.), 91(133):1(5) (1973), 50–61; Math. USSR-Sb., 20:1 (1973), 53–65
Linking options:
https://www.mathnet.ru/eng/sm3103https://doi.org/10.1070/SM1973v020n01ABEH001835 https://www.mathnet.ru/eng/sm/v133/i1/p50
|
Statistics & downloads: |
Abstract page: | 272 | Russian version PDF: | 86 | English version PDF: | 8 | References: | 39 |
|