Abstract:
In this paper we prove the following assertion. Let A(x) be an n×n matrix whose elements belong to Ck[0,b], where k⩾0 and 0<b<∞. Furthermore, let {σj(x)}m1 (m⩽n) be the distinct eigenvalues of A(x) belonging to Ck[0,b]. Then, if A(x) for all x∈[0,b] is similar to a Jordan matrix J(x), in which to each eigenvalue σj(x) there corresponds a constant number of Jordan blocks whose dimension is also independent of x∈[0,b], it follows that A(x) is smoothly similar to J(x) on [0,b].
Bibliography: 6 titles.
\Bibitem{Ver73}
\by B.~V.~Verbitskii
\paper On~a~global property of a~matrix-valued function of one variable
\jour Math. USSR-Sb.
\yr 1973
\vol 20
\issue 1
\pages 53--65
\mathnet{http://mi.mathnet.ru/eng/sm3103}
\crossref{https://doi.org/10.1070/SM1973v020n01ABEH001835}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=339266}
\zmath{https://zbmath.org/?q=an:0296.15005}
Linking options:
https://www.mathnet.ru/eng/sm3103
https://doi.org/10.1070/SM1973v020n01ABEH001835
https://www.mathnet.ru/eng/sm/v133/i1/p50
This publication is cited in the following 3 articles:
A. K. Svinin, S. V. Svinina, “Stability of a difference scheme for a quasi-linear partial differential algebraic system of equations of index $(k,0)$”, Comput. Math. Math. Phys., 59:4 (2019), 513–528
S. V. Svinina, “Stability of Difference Scheme for a Semilinear Differential Algebraic System of Index (k, 0)”, J Math Sci, 239:2 (2019), 172
S. V. Gaidomak, “The canonical structure of a pencil of degenerate matrix functions”, Russian Math. (Iz. VUZ), 56:2 (2012), 19–28