Loading [MathJax]/jax/output/CommonHTML/jax.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1973, Volume 20, Issue 1, Pages 53–65
DOI: https://doi.org/10.1070/SM1973v020n01ABEH001835
(Mi sm3103)
 

This article is cited in 3 scientific papers (total in 3 papers)

On a global property of a matrix-valued function of one variable

B. V. Verbitskii
References:
Abstract: In this paper we prove the following assertion. Let A(x) be an n×n matrix whose elements belong to Ck[0,b], where k0 and 0<b<. Furthermore, let {σj(x)}m1 (mn) be the distinct eigenvalues of A(x) belonging to Ck[0,b]. Then, if A(x) for all x[0,b] is similar to a Jordan matrix J(x), in which to each eigenvalue σj(x) there corresponds a constant number of Jordan blocks whose dimension is also independent of x[0,b], it follows that A(x) is smoothly similar to J(x) on [0,b].
Bibliography: 6 titles.
Received: 16.05.1972
Bibliographic databases:
UDC: 517.5
MSC: Primary 15A21; Secondary 34A30
Language: English
Original paper language: Russian
Citation: B. V. Verbitskii, “On a global property of a matrix-valued function of one variable”, Math. USSR-Sb., 20:1 (1973), 53–65
Citation in format AMSBIB
\Bibitem{Ver73}
\by B.~V.~Verbitskii
\paper On~a~global property of a~matrix-valued function of one variable
\jour Math. USSR-Sb.
\yr 1973
\vol 20
\issue 1
\pages 53--65
\mathnet{http://mi.mathnet.ru/eng/sm3103}
\crossref{https://doi.org/10.1070/SM1973v020n01ABEH001835}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=339266}
\zmath{https://zbmath.org/?q=an:0296.15005}
Linking options:
  • https://www.mathnet.ru/eng/sm3103
  • https://doi.org/10.1070/SM1973v020n01ABEH001835
  • https://www.mathnet.ru/eng/sm/v133/i1/p50
  • This publication is cited in the following 3 articles:
    1. A. K. Svinin, S. V. Svinina, “Stability of a difference scheme for a quasi-linear partial differential algebraic system of equations of index $(k,0)$”, Comput. Math. Math. Phys., 59:4 (2019), 513–528  mathnet  crossref  crossref  isi  elib
    2. S. V. Svinina, “Stability of Difference Scheme for a Semilinear Differential Algebraic System of Index (k, 0)”, J Math Sci, 239:2 (2019), 172  crossref
    3. S. V. Gaidomak, “The canonical structure of a pencil of degenerate matrix functions”, Russian Math. (Iz. VUZ), 56:2 (2012), 19–28  mathnet  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:303
    Russian version PDF:95
    English version PDF:15
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025