Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1971, Volume 13, Issue 2, Pages 309–322
DOI: https://doi.org/10.1070/SM1971v013n02ABEH001893
(Mi sm3075)
 

Representation of functions in the unit disk by series of rational fractions

T. A. Leont'eva
References:
Abstract: It is shown that if $f(z)=\sum_{n=0}^\infty a_nz^n$, $a_n=O(1/n^p)$, $p>1$, then $f(z)$ can be expanded in a series
$$ f(z)=\sum_{k=1}^\infty\frac{A_k}{1-\lambda_kz},\qquad|\lambda_k|<1, $$
that converges uniformly inside the unit disk $|z|<1$. For $p>2$ the expansion is valid in the closed disk $|z|\leqslant1$, and $\sum_{k=1}^\infty|A_k|<\infty$.
Bibliography: 6 titles.
Received: 24.06.1970
Bibliographic databases:
UDC: 517.53
MSC: 30A16
Language: English
Original paper language: Russian
Citation: T. A. Leont'eva, “Representation of functions in the unit disk by series of rational fractions”, Math. USSR-Sb., 13:2 (1971), 309–322
Citation in format AMSBIB
\Bibitem{Leo71}
\by T.~A.~Leont'eva
\paper Representation of functions in the unit disk by series of rational fractions
\jour Math. USSR-Sb.
\yr 1971
\vol 13
\issue 2
\pages 309--322
\mathnet{http://mi.mathnet.ru//eng/sm3075}
\crossref{https://doi.org/10.1070/SM1971v013n02ABEH001893}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=279315}
\zmath{https://zbmath.org/?q=an:0221.30004|0238.30006}
Linking options:
  • https://www.mathnet.ru/eng/sm3075
  • https://doi.org/10.1070/SM1971v013n02ABEH001893
  • https://www.mathnet.ru/eng/sm/v126/i2/p313
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024