|
Representation of functions in the unit disk by series of rational fractions
T. A. Leont'eva
Abstract:
It is shown that if $f(z)=\sum_{n=0}^\infty a_nz^n$, $a_n=O(1/n^p)$, $p>1$, then $f(z)$ can be expanded in a series
$$
f(z)=\sum_{k=1}^\infty\frac{A_k}{1-\lambda_kz},\qquad|\lambda_k|<1,
$$
that converges uniformly inside the unit disk $|z|<1$. For $p>2$ the expansion is valid in the closed disk $|z|\leqslant1$, and $\sum_{k=1}^\infty|A_k|<\infty$.
Bibliography: 6 titles.
Received: 24.06.1970
Citation:
T. A. Leont'eva, “Representation of functions in the unit disk by series of rational fractions”, Math. USSR-Sb., 13:2 (1971), 309–322
Linking options:
https://www.mathnet.ru/eng/sm3075https://doi.org/10.1070/SM1971v013n02ABEH001893 https://www.mathnet.ru/eng/sm/v126/i2/p313
|
|