Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1973, Volume 19, Issue 4, Pages 469–508
DOI: https://doi.org/10.1070/SM1973v019n04ABEH001791
(Mi sm3061)
 

This article is cited in 6 scientific papers (total in 6 papers)

Representation of measurable functions almost everywhere by convergent series

F. G. Arutyunyan
References:
Abstract: In this paper it is proved that for a certain class of systems $\{\varphi _k\}$ (systems of type $(\mathrm{X})$) one may construct a series
\begin{equation} \sum^\infty_{k=1}a_k\varphi_k(t),\qquad t\in[0,1], \end{equation}
having the following properties:
1) $\lim_{k\to\infty}a_k\varphi_k(t)=0$ uniformly on the interval $[0,1]$.
2) For any measurable function $f(t)$ on the interval $[0,1]$ and for any number $N$, one can find a partial series
$$ \sum^\infty_{k=1}a_{n_k}\varphi_{n_k}(t),\qquad(N<n_1<n_2<\cdots), $$
from (1) which converges to $f(t)$ almost everywhere on the set where $f(t)$ is finite, and converges to $f(t)$ in measure on $[0,1]$.
3) If, in addition, the functions $\varphi_k$ ($k\geqslant1$) and $f$ are piecewise continuous and $\inf_{t\in[0,1]}f(t)>0$, then
$$ \sum^\infty_{k=1}a_{n_k}\varphi_{n_k}(t)\qquad\text{for all $t\in[0,1]$ and $m\geqslant1$}. $$
It is shown that systems of type $(\mathrm X)$ include, for example, trigonometric systems, the systems of Haar and Walsh, indexed in their original or a different order, any basis of the space $C(0,1)$, and others.
Bibliography: 19 titles.
Received: 06.09.1972
Bibliographic databases:
UDC: 517.512
MSC: Primary 42A56, 42A60; Secondary 42A20
Language: English
Original paper language: Russian
Citation: F. G. Arutyunyan, “Representation of measurable functions almost everywhere by convergent series”, Math. USSR-Sb., 19:4 (1973), 469–508
Citation in format AMSBIB
\Bibitem{Aru73}
\by F.~G.~Arutyunyan
\paper Representation of~measurable functions almost everywhere by convergent series
\jour Math. USSR-Sb.
\yr 1973
\vol 19
\issue 4
\pages 469--508
\mathnet{http://mi.mathnet.ru//eng/sm3061}
\crossref{https://doi.org/10.1070/SM1973v019n04ABEH001791}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=342668}
\zmath{https://zbmath.org/?q=an:0256.42017}
Linking options:
  • https://www.mathnet.ru/eng/sm3061
  • https://doi.org/10.1070/SM1973v019n04ABEH001791
  • https://www.mathnet.ru/eng/sm/v132/i4/p483
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024