Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1973, Volume 19, Issue 2, Pages 225–226
DOI: https://doi.org/10.1070/SM1973v019n02ABEH001747
(Mi sm3008)
 

This article is cited in 9 scientific papers (total in 9 papers)

On the decomposition of an entire function of finite order into factors having given growth

V. S. Azarin
References:
Abstract: In this paper the following result is proved:
Theorem. Let $\lambda_i,$ $i=1,\dots,n,$ be given such that $\lambda_i\geqslant0$ and $\sum\lambda_i=1$. Then any entire function $f(z)$ of finite order $\rho$ can be presented as a product of factors $f_i(z)$ such that
$$ \ln|f_i(z)|=\lambda_i\ln|f(z)|+o(|z|^\rho),\quad i=1,\dots,n, $$
as $z\to\infty,$ $z$ outside a $C_0$-set.

Bibliography: 3 titles.
Received: 23.06.1972
Bibliographic databases:
UDC: 517.535.4
MSC: 30A66
Language: English
Original paper language: Russian
Citation: V. S. Azarin, “On the decomposition of an entire function of finite order into factors having given growth”, Math. USSR-Sb., 19:2 (1973), 225–226
Citation in format AMSBIB
\Bibitem{Aza73}
\by V.~S.~Azarin
\paper On the decomposition of an entire function of finite order into factors having given growth
\jour Math. USSR-Sb.
\yr 1973
\vol 19
\issue 2
\pages 225--226
\mathnet{http://mi.mathnet.ru//eng/sm3008}
\crossref{https://doi.org/10.1070/SM1973v019n02ABEH001747}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=324031}
\zmath{https://zbmath.org/?q=an:0253.30018}
Linking options:
  • https://www.mathnet.ru/eng/sm3008
  • https://doi.org/10.1070/SM1973v019n02ABEH001747
  • https://www.mathnet.ru/eng/sm/v132/i2/p229
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:420
    Russian version PDF:108
    English version PDF:7
    References:69
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024