Processing math: 100%
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1973, Volume 19, Issue 2, Pages 209–223
DOI: https://doi.org/10.1070/SM1973v019n02ABEH001746
(Mi sm3007)
 

This article is cited in 5 scientific papers (total in 5 papers)

Monotonicity in the theory of almost periodic solutions of nonlinear operator equations

V. V. Zhikov
References:
Abstract: In a Banach space with a strictly convex norm we consider a nonlinear equation u+A(t)u=0 of general form. Suppose that a “monotonicity” condition is satisfied: for any two solutions u1(t) and u2(t) the function g(t)=u1(t)u2(t) is nonincreasing with respect to t; suppose A(t) is almost periodic (in some sense) with respect to t.
The basic theorem reads as follows: given strong (weak) continuity of the solutions with respect to the initial conditions and the coefficients, there exists at least one almost periodic solution if there exists a compact (weakly compact) solution on t0.
Bibliography: 26 titles.
Received: 21.06.1972
Bibliographic databases:
UDC: 519.4+517+513.88
MSC: Primary 47H15, 34C25, 34G05; Secondary 34H05, 47H10
Language: English
Original paper language: Russian
Citation: V. V. Zhikov, “Monotonicity in the theory of almost periodic solutions of nonlinear operator equations”, Math. USSR-Sb., 19:2 (1973), 209–223
Citation in format AMSBIB
\Bibitem{Zhi73}
\by V.~V.~Zhikov
\paper Monotonicity in the theory of almost periodic solutions of nonlinear operator equations
\jour Math. USSR-Sb.
\yr 1973
\vol 19
\issue 2
\pages 209--223
\mathnet{http://mi.mathnet.ru/eng/sm3007}
\crossref{https://doi.org/10.1070/SM1973v019n02ABEH001746}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=341221}
\zmath{https://zbmath.org/?q=an:0259.34071}
Linking options:
  • https://www.mathnet.ru/eng/sm3007
  • https://doi.org/10.1070/SM1973v019n02ABEH001746
  • https://www.mathnet.ru/eng/sm/v132/i2/p214
  • This publication is cited in the following 5 articles:
    1. David N. Cheban, Peter E. Kloeden, Björn Schmalfuß, “Global attractors for $V$-monotone nonautonomous dynamical systems”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2003, no. 1, 47–57  mathnet  mathscinet  zmath
    2. D. N. Cheban, “Bounded solutions of linear almost periodic differential equations”, Izv. Math., 62:3 (1998), 581–600  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. A. A. Pankov, “Boundedness and almost periodicity in time of solutions of evolutionary variational inequalities”, Math. USSR-Izv., 20:2 (1983), 303–332  mathnet  crossref  mathscinet  zmath
    4. A. A. Pankov, “Bounded and almost periodic solutions of evolutionary variational inequalities”, Math. USSR-Sb., 36:4 (1980), 519–533  mathnet  crossref  mathscinet  zmath  isi
    5. V. V. Zhikov, B. M. Levitan, “Favard theory”, Russian Math. Surveys, 32:2 (1977), 129–180  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:671
    Russian version PDF:203
    English version PDF:12
    References:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025