Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1973, Volume 19, Issue 1, Pages 23–34
DOI: https://doi.org/10.1070/SM1973v019n01ABEH001733
(Mi sm2992)
 

This article is cited in 1 scientific paper (total in 1 paper)

Projective resolutions and cohomological triviality of $p$-periodic bimodules over Frobenius orders

F. R. Bobovich
References:
Abstract: Let $\Lambda$ be a Frobenius order in a simple algebra over the field of $p$-adic numbers, $\dim_{\Lambda^e}\Lambda=0$. For a finitely-generated $p$-periodic $\Lambda$-bimodule, we establish the existence of a $\Lambda^e/p$-free resolution whose generating function is an associate of the Poincaré series in the ring of formal power series with integral coefficients. Our subsequent investigations are restricted to orders of the form described which in addition satisfy a certain "disjointness condition modulo $p$", which is formulated in terms of constraints on the Cartan matrix of the ring $\Lambda^e/p$. We find conditions sufficient for the existence of a $p$-periodic module with trivial homology (in the sense of Hochschild) and having infinite projective dimension over the ring $\Lambda^e/p$. We prove a Nakayama-type theorem on the triviality of the cohomology groups of $\Lambda$ with coefficients in irreducible $\Lambda$-bimodules.
Bibliography: 12 titles.
Received: 21.12.1971
Bibliographic databases:
UDC: 519.48
MSC: Primary 18G10; Secondary 16A18, 16A36
Language: English
Original paper language: Russian
Citation: F. R. Bobovich, “Projective resolutions and cohomological triviality of $p$-periodic bimodules over Frobenius orders”, Math. USSR-Sb., 19:1 (1973), 23–34
Citation in format AMSBIB
\Bibitem{Bob73}
\by F.~R.~Bobovich
\paper Projective resolutions and cohomological triviality of $p$-periodic bimodules over Frobenius orders
\jour Math. USSR-Sb.
\yr 1973
\vol 19
\issue 1
\pages 23--34
\mathnet{http://mi.mathnet.ru//eng/sm2992}
\crossref{https://doi.org/10.1070/SM1973v019n01ABEH001733}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=344314}
\zmath{https://zbmath.org/?q=an:0256.18011}
Linking options:
  • https://www.mathnet.ru/eng/sm2992
  • https://doi.org/10.1070/SM1973v019n01ABEH001733
  • https://www.mathnet.ru/eng/sm/v132/i1/p23
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024