Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1998, Volume 189, Issue 1, Pages 147–157
DOI: https://doi.org/10.1070/sm1998v189n01ABEH000299
(Mi sm299)
 

This article is cited in 3 scientific papers (total in 3 papers)

Actions of Hopf algebras

A. A. Totok

M. V. Lomonosov Moscow State University
References:
Abstract: We consider an action of a finite-dimensional Hopf algebra $H$ on a non-commutative associative algebra $A$. Properties of the invariant subalgebra $A^H$ in $A$ are studied. It is shown that if $A$ is integral over its centre $\mathrm Z(A)$ then in each of three cases $A$ will be integral over $\mathrm Z(A)^H$ (the invariant subalgebra in $\mathrm Z(A)$):
  • 1) the coradical $H_0$ is cocommutative and char $\operatorname {char}k=p>0$,
  • 2) $H$ is pointed, $A$ has no nilpotent elements, $\mathrm Z(A)$ is an affine algebra, and $\operatorname {char}k=0$,
  • 3) $H$ is cocommutative.

We also consider an action of a commutative Hopf algebra $H$ on an arbitrary associative algebra, in particular, the canonical action of $H$ on the tensor algebra $T(H)$. A structure theorem on Hopf algebras is proved by application of the technique developed. Namely, every commutative finite-dimensional Hopf algebra $H$ whose coradical $H_0$ is a sub-Hopf algebra or cocommutative, where $\operatorname {char}k=0$ or $\operatorname {char}k>\dim H$, is cosemisimple, that is, $H=H_0$. In particular, a commutative pointed Hopf algebra with $\operatorname {char}k=0$ or $\operatorname {char}k>\dim H$ will be a group Hopf algebra. An example is also constructed showing that the restrictions on $\operatorname {char}k$ are essential.
Received: 28.04.1997
Russian version:
Matematicheskii Sbornik, 1998, Volume 189, Number 1, Pages 149–160
DOI: https://doi.org/10.4213/sm299
Bibliographic databases:
UDC: 512.667.7
MSC: 16W30
Language: English
Original paper language: Russian
Citation: A. A. Totok, “Actions of Hopf algebras”, Mat. Sb., 189:1 (1998), 149–160; Sb. Math., 189:1 (1998), 147–157
Citation in format AMSBIB
\Bibitem{Tot98}
\by A.~A.~Totok
\paper Actions of Hopf algebras
\jour Mat. Sb.
\yr 1998
\vol 189
\issue 1
\pages 149--160
\mathnet{http://mi.mathnet.ru/sm299}
\crossref{https://doi.org/10.4213/sm299}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1616452}
\zmath{https://zbmath.org/?q=an:0914.16019}
\transl
\jour Sb. Math.
\yr 1998
\vol 189
\issue 1
\pages 147--157
\crossref{https://doi.org/10.1070/sm1998v189n01ABEH000299}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000073979600008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0032220862}
Linking options:
  • https://www.mathnet.ru/eng/sm299
  • https://doi.org/10.1070/sm1998v189n01ABEH000299
  • https://www.mathnet.ru/eng/sm/v189/i1/p149
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:386
    Russian version PDF:131
    English version PDF:15
    References:42
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024