Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1977, Volume 33, Issue 1, Pages 147–158
DOI: https://doi.org/10.1070/SM1977v033n01ABEH002418
(Mi sm2942)
 

Carleman estimates for the Schrödinger operator with a locally semibounded strongly singular potential

Yu. B. Orochko
References:
Abstract: Let $A$ be an arbitrary selfadjoint extension in $L_2(\mathbf R^n)$, $n\geqslant2$, of the minimal Schrödinger operator with a potential $q(x)\in L_{2,\mathrm{loc}}(\mathbf R^n)$ that is locally bounded from below. For a certain class of functions $\Phi(A,t)$ of $A$ and a parameter $t>0$, which are connected with the hyperbolic equation $u''=Au$, an estimate of the form
$$ \bigl|[\Phi(A,t)f](x)\bigr|\leqslant c(x,t)\int_{|y-x|\leqslant t}|f(y)|^2\,dy $$
is obtained for almost all $x\in\mathbf R^n$; here $f\in L_2(\mathbf R)^n$ is a function with compact supportand $c(x,t)$ is explicitly expressed in terms of an arbitrary continuous function $m(x)\geqslant-q(x)$, $x\in\mathbf R^n$. An application of this estimate to the question of pointwise approximation of functions by spectral “wave packets” is considered.
Bibliography: 15 titles.
Received: 22.10.1976
Bibliographic databases:
UDC: 517.43
MSC: 35J10, 35B45
Language: English
Original paper language: Russian
Citation: Yu. B. Orochko, “Carleman estimates for the Schrödinger operator with a locally semibounded strongly singular potential”, Math. USSR-Sb., 33:1 (1977), 147–158
Citation in format AMSBIB
\Bibitem{Oro77}
\by Yu.~B.~Orochko
\paper Carleman estimates for the Schr\"odinger operator with a~locally semibounded strongly singular potential
\jour Math. USSR-Sb.
\yr 1977
\vol 33
\issue 1
\pages 147--158
\mathnet{http://mi.mathnet.ru//eng/sm2942}
\crossref{https://doi.org/10.1070/SM1977v033n01ABEH002418}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=487071}
\zmath{https://zbmath.org/?q=an:0365.35016|0398.35021}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1977GQ33000009}
Linking options:
  • https://www.mathnet.ru/eng/sm2942
  • https://doi.org/10.1070/SM1977v033n01ABEH002418
  • https://www.mathnet.ru/eng/sm/v146/i1/p162
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024