Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1976, Volume 30, Issue 4, Pages 539–563
DOI: https://doi.org/10.1070/SM1976v030n04ABEH002287
(Mi sm2922)
 

This article is cited in 4 scientific papers (total in 4 papers)

A formula expressing the solution of a differential equation with analytic coefficients on a manifold without boundary in terms of the data of the problem

A. V. Babin
References:
Abstract: On a compact manifold $\Omega$ we examine the equation
\begin{equation} A_2u=h. \end{equation}
We assume that $A_2$ is a second-order elliptic selfadjoint positive definite differential operator and that the coefficients of the operator and of the function $h$ are analytic on $\Omega$. It is well known that equation (1) has a unique global solution $u(\omega)$ defined on the whole $\Omega$ (as a consequence of the Cauchy–Kowalewski theorem there are many local solutions). In this paper we obtain an explicit expression for the value of $u(\omega)$ at a point $\omega_0$ in terms of the Taylor coefficients of the right-hand side at $\omega_0$, and of the coefficients of the operator. By the same token we obtain an expression for the solution of the global problem in terms of the local data of this problem.
Bibliography: 7 titles.
Received: 23.02.1976
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1976, Volume 101(143), Number 4(12), Pages 610–638
Bibliographic databases:
UDC: 517.946
MSC: Primary 35J15, 35C10; Secondary 35A10
Language: English
Original paper language: Russian
Citation: A. V. Babin, “A formula expressing the solution of a differential equation with analytic coefficients on a manifold without boundary in terms of the data of the problem”, Mat. Sb. (N.S.), 101(143):4(12) (1976), 610–638; Math. USSR-Sb., 30:4 (1976), 539–563
Citation in format AMSBIB
\Bibitem{Bab76}
\by A.~V.~Babin
\paper A~formula expressing the solution of a~differential equation with analytic coefficients on a~manifold without boundary in terms of the data of the problem
\jour Mat. Sb. (N.S.)
\yr 1976
\vol 101(143)
\issue 4(12)
\pages 610--638
\mathnet{http://mi.mathnet.ru/sm2922}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=470994}
\zmath{https://zbmath.org/?q=an:0373.58010}
\transl
\jour Math. USSR-Sb.
\yr 1976
\vol 30
\issue 4
\pages 539--563
\crossref{https://doi.org/10.1070/SM1976v030n04ABEH002287}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1976FU24400007}
Linking options:
  • https://www.mathnet.ru/eng/sm2922
  • https://doi.org/10.1070/SM1976v030n04ABEH002287
  • https://www.mathnet.ru/eng/sm/v143/i4/p610
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:399
    Russian version PDF:297
    English version PDF:20
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024