|
This article is cited in 1 scientific paper (total in 1 paper)
Induced extremal surfaces
V. I. Bernik
Abstract:
Under general assumptions on the functions $f_1(x),\dots,f_n(x)$ and $\varphi_1(y_1,\dots,y_k),\dots,\varphi_m(y_1,\dots,y_k)$ it is proved that the inequality
$$
\|a_1f_1+\dots+a_nf_n+a_{n+1}\varphi_1+\dots+a_{n+m}\varphi_m\|<H^{-(m+n)-\varepsilon},
$$
where $\|\alpha\|$ is the distance from $\alpha$ to the nearest integer and $H=\max|a_i|$, $i=1,\dots,n+m$, has only a finite number of solutions in integers $a_1,\dots,a_{n+m}$ for almost all $(x,y_1,\dots,y_k)\in R^{k+1}$. This establishes the extremality of the surface $(f_1,\dots,f_n,\varphi_1,\dots,\varphi_m)$.
Bibliography: 11 titles.
Received: 25.05.1976
Citation:
V. I. Bernik, “Induced extremal surfaces”, Math. USSR-Sb., 32:4 (1977), 413–421
Linking options:
https://www.mathnet.ru/eng/sm2921https://doi.org/10.1070/SM1977v032n04ABEH002395 https://www.mathnet.ru/eng/sm/v145/i4/p480
|
Statistics & downloads: |
Abstract page: | 342 | Russian version PDF: | 102 | English version PDF: | 5 | References: | 61 |
|