Abstract:
In this paper the concept of a metric in the space of random variables defined on a probability space is introduced. The principle of three stages in the study of approximation problems is formulated, in particular problems of approximating distributions.
Various facts connected with the use of metrics in these three stages are presented and proved. In the second part of the paper a series of results is introduced which are related to stability problems in characterizing distributions and to problems of estimating the remainder terms in limiting approximations of distributions of sums of independent random variables.
Both the account of properties of metrics and the application of these facts in the second part of the paper are presented under the assumption that the random variables take values in a general space (metric, Banach or Hilbert space).
Bibliography: 11 titles.
\Bibitem{Zol76}
\by V.~M.~Zolotarev
\paper Metric distances in spaces of random variables and their distributions
\jour Math. USSR-Sb.
\yr 1976
\vol 30
\issue 3
\pages 373--401
\mathnet{http://mi.mathnet.ru/eng/sm2908}
\crossref{https://doi.org/10.1070/SM1976v030n03ABEH002280}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=467869}
\zmath{https://zbmath.org/?q=an:0367.60003}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1976FN58700007}
Linking options:
https://www.mathnet.ru/eng/sm2908
https://doi.org/10.1070/SM1976v030n03ABEH002280
https://www.mathnet.ru/eng/sm/v143/i3/p416
This publication is cited in the following 87 articles:
Lutz Mattner, “A convolution inequality, yielding a sharper Berry–Esseen theorem for summands Zolotarev-close to normal”, Theor. Probability and Math. Statist., 2024
Marieke Stolte, Franziska Kappenberg, Jörg Rahnenführer, Andrea Bommert, “Methods for quantifying dataset similarity: a review, taxonomy and comparison”, Statist. Surv., 18:none (2024)
Lorenzo Pareschi, Giuseppe Toscani, “The Kinetic Theory of Mutation Rates”, Axioms, 12:3 (2023), 265
Alexander Vidal, Samy Wu Fung, Luis Tenorio, Stanley Osher, Levon Nurbekyan, “Taming hyperparameter tuning in continuous normalizing flows using the JKO scheme”, Sci Rep, 13:1 (2023)
Anna Gusakova, Matthias Reitzner, Christoph Thäle, “Variance expansion and Berry-Esseen bound for the number of vertices of a random polygon in a polygon”, Annales Henri Lebesgue, 6 (2023), 875
Florian Heinemann, Axel Munk, Yoav Zemel, “Randomized Wasserstein Barycenter Computation: Resampling with Statistical Guarantees”, SIAM Journal on Mathematics of Data Science, 4:1 (2022), 229
Marcel Klatt, Axel Munk, Yoav Zemel, “Limit laws for empirical optimal solutions in random linear programs”, Ann Oper Res, 315:1 (2022), 251
Anil Aswani, Matt Olfat, “Optimization hierarchy for fair statistical decision problems”, Ann. Statist., 50:6 (2022)
Giuseppe Toscani, “On Fourier-Based Inequality Indices”, Entropy, 24:10 (2022), 1393
Werner Zellinger, Bernhard A. Moser, Susanne Saminger-Platz, “On generalization in moment-based domain adaptation”, Ann Math Artif Intell, 89:3-4 (2021), 333
Werner Zellinger, Bernhard A. Moser, “On the truncated Hausdorff moment problem under Sobolev regularity conditions”, Applied Mathematics and Computation, 400 (2021), 126057
Philippe Briand, Christel Geiss, Stefan Geiss, Céline Labart, “Donsker-type theorem for BSDEs: Rate of convergence”, Bernoulli, 27:2 (2021)
Tran Loc Hung, Phan TriKien, “On the rates of convergence in weak limit theorems for geometric random sums of the strictly stationary sequence of m-dependent random variables”, Lith Math J, 60:2 (2020), 173
Andrey Borisov, Igor Sokolov, “Optimal Filtering of Markov Jump Processes Given Observations with State-Dependent Noises: Exact Solution and Stable Numerical Schemes”, Mathematics, 8:4 (2020), 506
Pavel S. Ruzankin, Igor S. Borisov, “On the rate of Poisson approximation to Bernoulli partial sum processes”, Statistics & Probability Letters, 162 (2020), 108754
Ralph Neininger, Henning Sulzbach, “On a functional contraction method”, Ann. Probab., 43:4 (2015)
Svetlozar T. Rachev, Lev B. Klebanov, Stoyan V. Stoyanov, Frank J. Fabozzi, The Methods of Distances in the Theory of Probability and Statistics, 2013, 335
Svetlozar T. Rachev, Lev B. Klebanov, Stoyan V. Stoyanov, Frank J. Fabozzi, The Methods of Distances in the Theory of Probability and Statistics, 2013, 67
Svetlozar T. Rachev, Lev B. Klebanov, Stoyan V. Stoyanov, Frank J. Fabozzi, The Methods of Distances in the Theory of Probability and Statistics, 2013, 421