Abstract:
This paper considers a boundary value problem for the equation
Lu≡((−1)mP2m(Dx,Dy)+Dy)u=f(x,y)Lu≡((−1)mP2m(Dx,Dy)+Dy)u=f(x,y)
in some conical domains ΩΩ, where x∈Rn−1x∈Rn−1, y∈R1y∈R1, P2mP2m is a homogeneous polynomial of degree 2m2m with real coefficients, and P2m(ξ,η)⩾μ(|ξ|2m+η2m). An essential restriction on the domain is the following condition: the boundary contains no rays parallel to the y-axis. The first part of the paper studies, for a wide class of domains Ω, the asymptotics of a fundamental solution and the solution of a boundary value problem subject to the condition that the right-hand side and the boundary data tend rapidly to zero at infinity. In § 3, for a specific domain Ω and n=2, a more involved case is examined, in which the right-hand side and the boundary data are unbounded.
Bibliography: 13 titles.
Citation:
A. M. Il'in, E. F. Lelikova, “Asymptotics of solutions of some elliptic equations in unbounded domains”, Math. USSR-Sb., 47:2 (1984), 295–313
\Bibitem{IliLel82}
\by A.~M.~Il'in, E.~F.~Lelikova
\paper Asymptotics of solutions of some elliptic equations in unbounded domains
\jour Math. USSR-Sb.
\yr 1984
\vol 47
\issue 2
\pages 295--313
\mathnet{http://mi.mathnet.ru/eng/sm2885}
\crossref{https://doi.org/10.1070/SM1984v047n02ABEH002643}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=678829}
\zmath{https://zbmath.org/?q=an:0549.35009|0512.35016}
Linking options:
https://www.mathnet.ru/eng/sm2885
https://doi.org/10.1070/SM1984v047n02ABEH002643
https://www.mathnet.ru/eng/sm/v161/i3/p307
This publication is cited in the following 10 articles:
S. F. Dolbeeva, V. N. Pavlenko, S. V. Matveev, O. N. Dementev, A. V. Melnikov, E. A. Sbrodova, A. A. Solovev, V. I. Ukhobotov, V. E. Fedorov, E. A. Fominykh, A. A. Ershov, “Arlen Mikhailovich Ilin. 85 let so dnya rozhdeniya”, Chelyab. fiz.-matem. zhurn., 2:1 (2017), 5–9
“Arlen Mikhailovich Ilin (k vosmidesyatiletiyu so dnya rozhdeniya)”, Ufimsk. matem. zhurn., 4:2 (2012), 3–12
A. R. Danilin, “Asymptotic behaviour of solutions of a singular elliptic system
in a rectangle”, Sb. Math., 194:1 (2003), 31–61
V. M. Babich, L. A. Kalyakin, M. D. Ramazanov, N. Kh. Rozov, “Arlen Mikhailovich Il'in (on the occasion of the 70th anniversary)”, Proc. Steklov Inst. Math. (Suppl.), 2003no. , suppl. 1, S1–S7
A. R. Danilin, “Approximation of a singularly perturbed elliptic optimal control problem with geometric constraints on the control”, Proc. Steklov Inst. Math. (Suppl.), 2003no. , suppl. 1, S45–S53
A. R. Danilin, “Approximation of a singularly perturbed elliptic problem of optimal control”, Sb. Math., 191:10 (2000), 1421–1431
Danilin, AR, “Asymptotics of control for a singular elliptic problem”, Doklady Akademii Nauk, 369:3 (1999), 305
O. N. Bulycheva, V. G. Sushko, “Postroenie priblizhennogo resheniya dlya odnoi singulyarno vozmuschennoi parabolicheskoi zadachi s negladkim vyrozhdeniem”, Fundament. i prikl. matem., 1:4 (1995), 881–905
Shaigardanov Y., “Asymptotic-Expansion, with Respect to a Parameter, of a Solution of a High-Order Elliptic Equation in the Neighborhood of a Discontinuity Line of the Limit Equation”, Differ. Equ., 21:4 (1985), 482–490
A. M. Il'in, E. F. Lelikova, “Asymptotics of the solutions of some higher order elliptic equations in conical domains”, Math. USSR-Sb., 53:1 (1986), 89–117