Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1998, Volume 189, Issue 1, Pages 19–41
DOI: https://doi.org/10.1070/sm1998v189n01ABEH000288
(Mi sm288)
 

This article is cited in 17 scientific papers (total in 17 papers)

Self-dual geometry of generalized Hermitian surfaces

O. E. Arsen'eva, V. F. Kirichenko

Moscow State Pedagogical University
References:
Abstract: Several results on the geometry of conformally semiflat Hermitian surfaces of both classical and hyperbolic types (generalized Hermitian surfaces) are obtained. Some of these results are generalizations and clarifications of already known results in this direction due to Koda, Itoh, and other authors. They reveal some unexpected beautiful connections between such classical characteristics of conformally semiflat (generalized) Hermitian surfaces as the Einstein property, the constancy of the holomorphic sectional curvature, and so on. A complete classification of compact self-dual Hermitian $RK$-surfaces that are at the same time generalized Hopf manifolds is obtained. This provides a complete solution of the Chen problem in this class of Hermitian surfaces.
Received: 16.12.1996
Bibliographic databases:
UDC: 514.76
MSC: 53C55, 53B35
Language: English
Original paper language: Russian
Citation: O. E. Arsen'eva, V. F. Kirichenko, “Self-dual geometry of generalized Hermitian surfaces”, Sb. Math., 189:1 (1998), 19–41
Citation in format AMSBIB
\Bibitem{ArsKir98}
\by O.~E.~Arsen'eva, V.~F.~Kirichenko
\paper Self-dual geometry of generalized Hermitian surfaces
\jour Sb. Math.
\yr 1998
\vol 189
\issue 1
\pages 19--41
\mathnet{http://mi.mathnet.ru//eng/sm288}
\crossref{https://doi.org/10.1070/sm1998v189n01ABEH000288}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1616428}
\zmath{https://zbmath.org/?q=an:0907.53023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000073979600002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0032220858}
Linking options:
  • https://www.mathnet.ru/eng/sm288
  • https://doi.org/10.1070/sm1998v189n01ABEH000288
  • https://www.mathnet.ru/eng/sm/v189/i1/p21
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:434
    Russian version PDF:199
    English version PDF:11
    References:61
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024