Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1984, Volume 47, Issue 1, Pages 237–268
DOI: https://doi.org/10.1070/SM1984v047n01ABEH002640
(Mi sm2847)
 

This article is cited in 19 scientific papers (total in 19 papers)

The action of modular operators on the Fourier–Jacobi coefficients of modular forms

V. A. Gritsenko
References:
Abstract: The author studies the imbedding of the Hecke $p$-ring $L_p^{n+1}$ of the modular group $\mathrm{Sp}_{n+1}(\mathbf{Z})$ of genus $n+1$ in the Hecke ring $L_p^{n,1}$ of the group $\Gamma_{n,1}$ given by
$$ \Gamma_{n,1}=\left\{\begin{pmatrix} A&0&B&*\\ *&*&*&*\\ C&0&D&*\\ 0&0&0&* \end{pmatrix}\in\mathrm{Sp}_{n+1}(\mathbf{Z})\right\}. $$
It is proved that the Hecke polynomial $Q_{n,1}^{(n+1)}(z)$ of $L_p^{n+1}$ splits over $L_p^{n,1}$, and the coefficients of the factors can be written explicitly in terms of the coefficients of the Hecke polynomial $Q^{(n)}(z)$ of genus $n$ and “negative” powers of a particular element $\Lambda$ of $L_p^{n,1}$. The "$-1$ power" of $\Lambda$ is computed and a formula for $\Lambda^{-2}$ is presented. The results that are obtained permit one to describe a large class of power series constructed from the Fourier–Jacobi coefficients by means of eigenfunctions with denominators depending only on the eigenvalues.
Bibliography: 19 titles.
Received: 02.02.1982
Russian version:
Matematicheskii Sbornik. Novaya Seriya, 1982, Volume 119(161), Number 2(10), Pages 248–277
Bibliographic databases:
UDC: 519.4
MSC: Primary 10D05, 10D20; Secondary 10D24, 10D40
Language: English
Original paper language: Russian
Citation: V. A. Gritsenko, “The action of modular operators on the Fourier–Jacobi coefficients of modular forms”, Mat. Sb. (N.S.), 119(161):2(10) (1982), 248–277; Math. USSR-Sb., 47:1 (1984), 237–268
Citation in format AMSBIB
\Bibitem{Gri82}
\by V.~A.~Gritsenko
\paper The action of modular operators on the Fourier--Jacobi coefficients of modular forms
\jour Mat. Sb. (N.S.)
\yr 1982
\vol 119(161)
\issue 2(10)
\pages 248--277
\mathnet{http://mi.mathnet.ru/sm2847}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=675196}
\zmath{https://zbmath.org/?q=an:0518.10029|0507.10017}
\transl
\jour Math. USSR-Sb.
\yr 1984
\vol 47
\issue 1
\pages 237--268
\crossref{https://doi.org/10.1070/SM1984v047n01ABEH002640}
Linking options:
  • https://www.mathnet.ru/eng/sm2847
  • https://doi.org/10.1070/SM1984v047n01ABEH002640
  • https://www.mathnet.ru/eng/sm/v161/i2/p248
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник (новая серия) - 1964–1988 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:526
    Russian version PDF:164
    English version PDF:28
    References:67
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024